Transport pathways of decapod larvae under intense mesoscale activity in the Canary-African coastal transition zone: implications for population connectivity
DOI:
https://doi.org/10.3989/scimar.04599.06AKeywords:
decapod larvae, C-ACTZ, upwelling filament, eddy, Lagrangian transport, connectivityAbstract
We investigate the transport dynamics of decapod larvae in the Canary-African coastal transition zone (C-ACTZ), where larval assemblages are poorly known. In August 1999, during the FAX99 cruise, the waters downstream of the Canary Island archipelago displayed intense mesoscale activity, with numerous cyclonic and anticyclonic eddies as well as upwelling filaments. Our results illustrate a close relationship between these mesoscale oceanographic structures and the distribution of decapod larvae, using both field observations and Lagrangian transport modelling. Analysis of plankton samples shows that larvae of pelagic species were excluded from filament waters, whereas larvae of neritic species were heterogeneously distributed, suggesting that the C-ACTZ is a mixing area where larvae originating from both the Canary Islands and the African coast may be present at the same time. This finding was supported by the simulations, which suggested that the larvae collected in the offshore waters south of Gran Canaria came mainly from the African population (between Cape Bojador and Cape Juby) during early August, whereas during the second half of August the targeted area was dominated by larvae released from Fuerteventura populations. Our observations introduce new insights into our understanding of marine population connectivity, the dispersal pathways of the terrestrial biota, and general biogeography in the region.
Downloads
References
Anger K. 2001. The Biology of Decapod Crustacean Larvae. Crustacean Issues: 14. A.A. Balkema Publishers.
Arístegui J., Tett P., Hernández-Guerra A., et al. 1997. The influence of island-generated eddies on chlorophyll distribution: A study of mesoscale variation around Gran Canaria. Deep-Sea Res. I 44: 71-96. https://doi.org/10.1016/S0967-0637(96)00093-3
Atlas R., Hoffman R.N., Ardizzone J., et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteor. Soc. 92: 157-174. https://doi.org/10.1175/2010BAMS2946.1
Baltar F., Arístegui J., Montero M.F., et al. 2009. Mesoscale variability modulates seasonal changes in the trophic structure of nano- and picoplankton communities across the NW Africa- Canary Islands transition zone. Prog. Oceanogr. 83: 180-188. https://doi.org/10.1016/j.pocean.2009.07.016
Baltar F., Arístegui J., Gasol J.M., et al. 2010. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J. 4: 975-988. https://doi.org/10.1038/ismej.2010.33 PMid:20357833
Barton E.D., Arístegui J., Tett P., et al. 1998. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 41: 455-504. https://doi.org/10.1016/S0079-6611(98)00023-8
Barton E.D., Basterretxea G., Flament P., et al. 2000. Lee region of Gran Canaria. J. Geophys. Res. 105: 17173-17193. https://doi.org/10.1029/2000JC900010
Barton E.D., Arístegui J., Tett P., et al. 2004. Variability in the Canary Islands area of filament-eddy exchanges. Prog. Oceanogr. 62: 71-94. https://doi.org/10.1016/j.pocean.2004.07.003
Basterretxea G., Barton E.D., Tett P., et al. 2002. Eddy and DCM response to wind shear in the lee of Gran Canaria. Deep-Sea Res. I, 49: 1087-1101. https://doi.org/10.1016/S0967-0637(02)00009-2
Bécognée P., Almeida C., Barrera A., et al. 2006. Annual cycle of clupeiform larvae around Gran Canaria island, Canary Islands. Fish. Oceanogr. 15: 293-300. https://doi.org/10.1111/j.1365-2419.2005.00390.x
Bécognée P., Moyano M., Almeida C., et al. 2009. Mesoscale distribution of clupeoid larvae in an upwelling filament trapped by a quasi-permanent cyclonic eddy off Northwest Africa. Deep-Sea Res. I 56: 330-343. https://doi.org/10.1016/j.dsr.2008.10.008
Bordes F., Uiblein F., Castillo R., et al. 1999. Epi- and mesopelagic fishes, acoustic data, and SST images collected off Lanzarote, Fuerteventura and Gran Canaria, Canary Islands, during Cruise ''La Bocaina 04-97''. Inf. Téc. Inst. Can. Cien. Mar. 5: 45 pp.
Brochier T., Ramzi A., Lett C., et al. 2008. Modelling sardine and anchovy ichthyoplankton transport in the Canary Current System. J. Plankton Res. 30: 1133-1146. https://doi.org/10.1093/plankt/fbn066
Brochier T., Mason E., Moyano M., et al. 2011. Ichthyoplankton transport from the African coast to the Canary Islands. J. Mar. Syst. 89: 109-122. https://doi.org/10.1016/j.jmarsys.2011.02.025
Capet X.J., Colas F., Penven P., et al. 2008. Ocean Modeling in an Eddying Regime in Eddies, In: Hecht M., Hasumi H. (eds) Eastern Boundary Subtropical Upwelling Systems. Geophys. Res. Lett. 177: 131-147.
Carton J.A., Giese B.S. 2008. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 136: 2999-3017. https://doi.org/10.1175/2007MWR1978.1
Casey K.S., Brandon T.B., Cornillon P., et al. 2010. The Past, Present and Future of the AVHRR Pathfinder SST Program, In: Barale V., Gower J.F.R., Alberotanza L. (eds) Oceanography from Space: Revisited. Springer. pp. 273-287. https://doi.org/10.1007/978-90-481-8681-5_16
Clarke K. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Clarke K., Warwick R. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd edition: PRIMER-E, Plymouth.
Clarke K., Gorley R. 2006. PRIMER v6: user manual/tutorial. PRIMER-E Ltd., Plymouth.
Colas F., Capet X., McWilliams J.C., et al. 2013. Mesoscale Eddy Buoyancy Flux and Eddy-Induced Circulation in Eastern Boundary Currents. J. Phys. Oceanogr. 43: 1073-1095. https://doi.org/10.1175/JPO-D-11-0241.1
Connolly S.R., Menge B.A., Roughgarden J. 2001. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82: 1799-1813. https://doi.org/10.1890/0012-9658(2001)082[1799:ALGIRO]2.0.CO;2
d'Udekem d'Acoz C. 1999. Inventaire et distribution des crustacés décapodes de l'Atlantique oriental, de la Méditerranée et des eaux continentales au nord de 25°N. Collection Patrimoines Naturels, 40: i-x + 1-383. Service du Patrimoine Naturel, Muséum National d'Histoire Naturelle, Paris.
De Grave S., Pentcheff N.D., Ahyong S.T., et al. 2009. A classification of living and fossil genera of decapod crustaceans. Raffles B. Zool. 21: 1-109.
Dos Santos A., Lindley J.A. 2001. Crustacea Decapoda: Larvae. II Dendrobranchiata. (Aristeidae, Benthesicymidae, Penaeidae, Solenoceridae, Sicyonidae, Sergestidae and Luciferidae). ICES Identif. Leafl. Plankton 186.
Dos Santos A., González-Gordillo J.I. 2004. Illustrated key for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. J. Mar. Biol. Assoc. U.K. 84: 205-227. https://doi.org/10.1017/S0025315404009075h
Dos Santos A., Santos A.M.P., Conway D.V.P., et al. 2008. Diel vertical migration of decapod larvae in the Portuguese coastal upwelling ecosystem: implications for offshore transport. Mar. Ecol. Prog. Ser. 359: 171-183. https://doi.org/10.3354/meps07341
Dufois F., Penven P., Whittle C.P., et al. 2012. On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary Upwelling Systems. Ocean Model. 47: 113-118. https://doi.org/10.1016/j.ocemod.2012.01.007
Faria J., Froufe E., Tuya F., et al. 2013. Panmixia in the endangered slipper lobster Scyllarides latus from the Northeastern Atlantic and Western Mediterranean. J. Crust. Biol. 33: 557-566. https://doi.org/10.1163/1937240X-00002158
Foxton P. 1970a. The vertical distribution of Pelagic Decapods (Crustacea: Natantia) collected on the Sond Cruise, 1965 I. The Caridea. J. Mar. Biol. Assoc. U.K. 50: 939-960. https://doi.org/10.1017/S0025315400005907
Foxton P. 1970b. The vertical distribution of Pelagic Decapods (Crustacea: Natantia) collected on the Sond Cruise, 1965 II. The Penaeidea and general discussion. J. Mar. Biol. Assoc. U.K. 50: 961-1000. https://doi.org/10.1017/S0025315400005919
García-Mu-oz M., Arístegui J., Montero M.F., et al. 2004. Distribution of organic matter along a filament-eddy system in the Canaries-NW Africa coastal transition zone region. Prog. Oceanogr. 62: 115-129. https://doi.org/10.1016/j.pocean.2004.07.005
González-Gordillo J.I., dos Santos A., Rodríguez A. 2001. Checklist and annotated bibliography of decapod crustacean larvae from the Southwestern European coast (Gibraltar Strait area). Sci. Mar. 65: 275-305. https://doi.org/10.3989/scimar.2001.65n4275
Heaney L.R. 2007. Is a new paradigm emerging for oceanic island biogeography? J. Biogeogr. 34: 753-757. https://doi.org/10.1111/j.1365-2699.2007.01692.x
Hernández-Guerra A., Arístegui J., Cantón M., et al. 1993. Phytoplankton pigment patterns in the Canary Islands area as determined using coastal zone colour scanner data. Int. J. Remote Sens. 14: 1431-1437. https://doi.org/10.1080/01431169308953977
Hernández-León S., Almeida C., Gómez M., et al. 2001a. Zooplankton biomass and indices of feeding and metabolism in island-generated eddies. J. Mar. Syst. 30: 51-66. https://doi.org/10.1016/S0924-7963(01)00037-9
Hernández-León S., Almeida C., Yebra L., et al. 2001b. Zooplankton abundance in subtropical waters: is there a lunar cycle? Sci. Mar. 65: 59-64. https://doi.org/10.3989/scimar.2001.65s159
Hernández-León S., Almeida C., Portillo-Hahnefeld A., et al. 2002a. Zooplankton biomass and indices of feeding and metabolism in relation to an upwelling filament off northwest Africa. J. Mar. Res. 60: 327-346. https://doi.org/10.1357/00222400260497516
Hernández-León S., Almeida C., Yebra L., et al. 2002b. Lunar cycle of zooplankton biomass in subtropical waters: biogeochemical implications. J. Plankton Res. 24: 935-939. https://doi.org/10.1093/plankt/24.9.935
Hopkins T.L., Gartner J.V. 1992. Resource-partitioning and predation impact of a low-latitude myctophid community. Mar. Biol. 114: 185-197. https://doi.org/10.1007/BF00349518
Jiménez B., Sangrà P., Mason E. 2008. A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Model. 22: 146-157. https://doi.org/10.1016/j.ocemod.2008.02.004
Joachimiak M.P., Weissman J.L., May B.C.H. 2006. JColorGrid: software for the visualization of biological measurements. BMC Bioinform. 7: 225-230. https://doi.org/10.1186/1471-2105-7-225 PMid:16640789 PMCid:PMC1479842
Jones B.H., Mooers C.N.K., Rienecker M.M., et al. 1991. Chemical and biological structure and transport of a cool filament associated with a jet-eddy system off northern California in July 1986 (OPTOMA21). J. Geophys. Res. 96 (C12): 22207-22225. https://doi.org/10.1029/91JC02146
Juan C., Emerson B., Oromí I., et al. 2000. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15: 104-109. https://doi.org/10.1016/S0169-5347(99)01776-0
Landeira J.M., Lozano-Soldevilla F., Hernández-León S., et al. 2009. Horizontal distribution of invertebrate larvae around the oceanic island of Gran Canaria: the effect of mesoscale variability. Sci. Mar. 73: 757-767. https://doi.org/10.3989/scimar.2009.73n4757
Landeira J.M., Lozano-Soldevilla F., Hernández-León S., et al. 2010. Spatial variability of planktonic invertebrate larvae in the Canary Islands area. J. Mar. Biol. Assoc. U.K. 90: 1217-1225. https://doi.org/10.1017/S0025315409990750
Landeira J.M., Lozano-Soldevilla F., Barton E.D. 2012. Mesoscale advection of Upogebia pusilla larvae through an upwelling filament in the Canaries CTZ. Helgol. Mar. Res. 66: 537-544. https://doi.org/10.1007/s10152-011-0289-5
Lasternas S., Piedeleu M., Sangrà P., et al. 2013. Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean. Biogeoscience 10: 2129-2143. https://doi.org/10.5194/bg-10-2129-2013
Lett C., Verley P., Mullon C., et al. 2008. A Lagrangian tool for modelling ichthyoplankton dynamics. Env. Model. Softw. 23: 1210-1214. https://doi.org/10.1016/j.envsoft.2008.02.005
Lobel P.S., Robinson A.R. 1988. Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. J. Plankton Res. 10: 1209-1223. https://doi.org/10.1093/plankt/10.6.1209
MacArthur R.H., Wilson E.O. 1967. The theory of island biogeography, Princeton Univ. Press. PMCid:PMC2237393
Mace A.J., Morgan S.G. 2006. Larval accumulation in the lee of a small headland: implications for the design of marine reserves. Mar. Ecol. Progr. Ser. 318: 19-29. https://doi.org/10.3354/meps318019
Marchesiello P., Estrade P. 2009. Eddy activity and mixing in upwelling systems: a comparative study of Northwest Africa and California regions. Int. J. Earth Sci. 98: 299-308. https://doi.org/10.1007/s00531-007-0235-6
Mason E., Molemaker M.J., Colas F., et al. 2010. Procedures for offline grid nesting in regional ocean models. Ocean Model. 35: 1-15. https://doi.org/10.1016/j.ocemod.2010.05.007
Mason E., Colas F., Molemaker M.J., et al. 2011. Seasonal variability of the Canary Current: a numerical study. J. Geophys. Res. 116: C00601. https://doi.org/10.1029/2010JC006665
Morgan S.G, Fisher J. 2010. Larval behavior regulates nearshore retention and offshore migration in an upwelling shadow and along the open coast. Mar. Ecol. Prog. Ser. 404: 109-126. https://doi.org/10.3354/meps08476
Morgan S.G, Fisher J., Miller S., et al. 2009. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90: 3489-3502. https://doi.org/10.1890/08-1550.1 PMid:20120816
Moyano M., Rodríguez J.M., Hernández-León S. 2009. Larval fish abundance and distribution during the late winter bloom off Gran Canaria Island, Canary Islands. Fish. Oceanogr. 18: 51-61. https://doi.org/10.1111/j.1365-2419.2008.00496.x
Navarrete S.A., Wieters E.A., Broitman B.R., et al. 2005. Scales of benthic–pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proc. Natl. Acad. Sci. U.S.A. 102: 18046-18051. https://doi.org/10.1073/pnas.0509119102 PMid:16332959 PMCid:PMC1312419
Palma A.T., Pardo L.M., Veas R.I., et al. 2006. Coastal brachyuran decapods: settlement and recruitment under contrasting coastal geometry conditions. Mar. Ecol. Prog. Ser. 316: 139-153. https://doi.org/10.3354/meps316139
Penven P., Echevin V., Pasapera J., et al. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res. 110 (C10): 021.
Piedeleu M., Sangrà P., Sánchez-Vidal A., et al. 2009. An observational study of oceanic eddy generation mechanisms by tall deep-water islands (Gran Canaria). Geophys. Res. Lett. 36: L14605. https://doi.org/10.1029/2008GL037010
Pineda J., Hare J.A., Sponaugle S. 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20: 22-39. https://doi.org/10.5670/oceanog.2007.27
Queiroga H., Blanton J. 2005. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Adv. Mar. Biol. 47: 107-214. https://doi.org/10.1016/S0065-2881(04)47002-3
Quinteiro J., Manent P., González N., et al. 2012. Red BANGEMAC: Banco genético marino de Macaronesia.
Rodríguez J.M., Hernández S., Barton E.D. 1999. Mesoscale distribution of fish larvae in relation to an upwelling filament off Northwest Africa. Deep-Sea Res. I 46: 1969-1984. https://doi.org/10.1016/S0967-0637(99)00036-9
Rodríguez J.M., Barton E.D., Eve L., et al. 2001. Mesozooplankton and ichthyoplankton distribution around Gran Canaria, an oceanic island in the NE Atlantic. Deep-Sea Res. I 48: 2161-2183. https://doi.org/10.1016/S0967-0637(01)00013-9
Rodríguez J.M., Barton E.D., Hernández-León S., et al. 2004. The influence of mesoscale physical processes on the larval fish larvae community in the Canaries-CTZ, in summer. Prog. Oceanogr. 62: 171-188. https://doi.org/10.1016/j.pocean.2004.07.006
Rodríguez J.M., Hernández-León S., Barton E.D. 2006. Vertical distribution of fish larvae in the Canaries CTZ, in summer. Mar. Biol. 149: 885-897. https://doi.org/10.1007/s00227-006-0270-z
Rodríguez J.M., Moyano M., Hernández-León S. 2009. The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: A review. Prog. Oceanogr. 83: 314-321. https://doi.org/10.1016/j.pocean.2009.07.009
Roughgarden J., Gaines S., Possingham H. 1988. Recruitment dynamics in complex life cycles. Science 241: 1460-1466. https://doi.org/10.1126/science.11538249 PMid:11538249
Saha S., Moorthi S., Pan H.-L., et al. 2010. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteor. Soc. 91: 1015-1057. https://doi.org/10.1175/2010BAMS3001.1
Sangrà P., Basterretxea G., Pelegrí J.L., et al. 2001. Chlorophyll increase due to internal waves on the shelf break of Gran Canaria (Canary Islands). Sci. Mar. 65 (Suppl. 1): 89-97. https://doi.org/10.3989/scimar.2001.65s189
Sangrà P., Auladell M., Marrero-Díaz A., et al. 2007. On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Res. I 54: 687-709. https://doi.org/10.1016/j.dsr.2007.02.004
Sangrà P., Pascual A., Rodríguez-Santana Á., et al. 2009. The Canary Eddy Corridor: a major pathway for long-lived eddies in the subtropical North Atlantic. Deep-Sea Res. I 54: 2100-2114. https://doi.org/10.1016/j.dsr.2009.08.008
Santana-Falcón Y., Benavides M., Sangrà P., et al. 2016. Coastal– offshore exchange of organic matter across the Cape Ghir filament (NW Africa) during moderate upwelling. J. Mar. Syst. 154: 233-242. https://doi.org/10.1016/j.jmarsys.2015.10.008
Shanks A.L., Shearman R.K. 2009. Paradigm lost? Cross-shelf distributions of intertidal invertebrate larvae are unaffected by upwelling or downwelling. Mar. Ecol. Prog. Ser. 385: 189-204. https://doi.org/10.3354/meps08043
Shchepetkin A.F., McWilliams J.C. 2005. The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell. 9: 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
Shchepetkin A.F., McWilliams J.C. 2009. Correction and commentary for "Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys. 227: 3595-3624, J. Comput. Phys. 228: 8985-9000. https://doi.org/10.1016/j.jcp.2009.09.002
Smith S.D. 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93: 15467-15472. https://doi.org/10.1029/JC093iC12p15467
Torres A.P., dos Santos A., Balbín R., et al. 2014. Decapod crustacean larval communities in the Balearic Sea (western Mediterranean): seasonal composition, horizontal and vertical distribution patterns. J. Mar. Syst. 138: 112-126. https://doi.org/10.1016/j.jmarsys.2013.11.017
Underwood A.J., Keough M.J. 2001. Supply-side ecology: the nature and consequences of variations in recruitment of intertidal organisms. In: Bertness M.D., Gaines S.D., Hay M.E. (eds). Marine community ecology. Sinauer, Sunderland, Massachusetts, pp. 183-200.
Veitch J., Penven P., Shillington F. 2010. Modeling equilibrium dynamics of the Benguela Current System. J. Phys. Oceanogr. 40: 1942-1964. https://doi.org/10.1175/2010JPO4382.1
Weersing K., Toonen R.J. 2009. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393: 1-12. https://doi.org/10.3354/meps08287
Wing S.R., Botsford L., Ralston J.S.V. et al. 1998. Meroplanktonic distribution and circulation in a coastal retention zone of the northern California upwelling system. Limnol. Oceanogr. 43: 1710-1721. https://doi.org/10.4319/lo.1998.43.7.1710
Whittaker R.J., Fernández-Palacios J.M. 2007. Island biogeography: ecology, evolution, and conservation. Oxford Univ. Press.
Yannicelli B., Castro L., Schneider W., et al. 2006. Crustacean larvae distribution in the coastal upwelling zone off Central Chile. Mar. Ecol. Prog. Ser. 319: 175-189. https://doi.org/10.3354/meps319175
Yebra L., Hernández-León S., Almeida C., et al. 2004. The effect of upwelling filaments and island-induced eddies on indices of feeding, respiration and growth in copepods. Prog. Oceanogr. 62: 151-169. https://doi.org/10.1016/j.pocean.2004.07.008
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.