Interaction of sinking behaviour of Saharan dust and lithogenic and biogenic fluxes in the Canary Basin
DOI:
https://doi.org/10.3989/scimar.04877.19AKeywords:
lithogenic flux, biogenic flux, POC flux, TEP, image analysis, Saharan dust, Canary BasinAbstract
Saharan dust events are currently the predominant source of lithogenic particles in the Canary Basin. In order to quantify this input and its relationship with the biogenic fluxes, a sediment trap was deployed in a free-drifting system at 150 m depth, 50 km off the north coast of Gran Canaria (Canary Islands). The mineralogy of the lithogenic particles included illite, calcite, hematite quartz, barite and kaolinite. The biogenic matter was composed of chitin, transparent exopolymer particles, and carbonates from foraminifera and gastropod shells. The average Saharan dust flux over the ocean surface was approximately 5±4 mg m–2 day-1. The lithogenic, carbonate and chitin fluxes were 0.8±0.6, 6.0±7.4 and 154±386 mg m–2 day-1, respectively. A fairly strong Saharan dust event during sampling was observed in the trap, with a delay of three days in the peaks of lithogenic and biogenic fluxes. The theoretical settling velocity of the lithogenic particles associated with Saharan dust events at 150 m depth was vStokes=275 m day-1, and the experimental settling was about 50 m day-1. The associated sinking behaviour of particulate organic carbon and biogenic and lithogenic fluxes observed in this study may contribute to a more realistic prediction of these fluxes in carbon biological pump models.
Downloads
References
Abrantes F., Meggers H., Nave S., et al. 2002. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29°N): implications for paleoreconstructions. Deep-Sea Res. II 49: 3599-3629. https://doi.org/10.1016/S0967-0645(02)00100-5
Alldredge A.L., Silver M.W. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41-82. https://doi.org/10.1016/0079-6611(88)90053-5
Alldredge A.L., Passow U., Logan B.E. 1993. The abundance and significance of large, transparent organic particles in the ocean. Deep-Sea Res. I 40: 1131-1140. https://doi.org/10.1016/0967-0637(93)90129-Q
Allen J.R.L. 1992. Principles of physical sedimentology. The Blackburn Press; Chapman & Hall, New Jersey, 272 pp.
Alonso-González I.J., Arístegui J., Lee C., et al. 2010a. Regional and temporal variability of sinking organic matter in the subtropical northeast Atlantic Ocean: a biomarker diagnosis. Biogeosciences 7: 2101-2115. https://doi.org/10.5194/bg-7-2101-2010
Alonso-González I.J., Arístegui J., Lee C, et al. 2010b. Role of slowly settling particles in the ocean carbon cycle. Geophys. Res. Lett. 37. https://doi.org/10.1029/2010GL043827
Álvarez-Salgado X.A., Arístegui J. 2015. Organic matter dynamics in the Canary Current. In: Valdés L., Déniz-González I. (eds), Oceanographic and biological features in the Canary Current Large Marine Ecosystem. IOC Tech. Ser. 115: 151-159. IOC-UNESCO, Paris. http://hdl.handle.net/1834/9185.
Anabalón V., Arístegui J., Morales C.E., et al. 2014. The structure of planktonic communities under variable coastal upwelling conditions off Cape Ghir (31°N) in the Canary Current System (NW Africa). Prog. Oceanogr. 120: 320-339. https://doi.org/10.1016/j.pocean.2013.10.015
Anderson R.F., Cheng H., Edwards R.L., et al. 2016. How well do we quantify dust deposition to the ocean? Philos. Trans. R. Soc. A. 374: 20150285. https://doi.org/10.1098/rsta.2015.0285 PMid:29035251 PMCid:PMC5069522
Ansmann A., Tesche M., Althausen D., et al. 2008. Influence of Saharan dust on cloud glaciation in southern Morocco during SAMUM. J. Geophys. Res. 113: D04210. https://doi.org/10.1029/2007JD008785
Armstrong R.A., Lee C., Hedges J.I., et al. 2002. A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49: 219-236. https://doi.org/10.1016/S0967-0645(01)00101-1
Ariza A.V., Garijo J.C., Landeira J.M., et al. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the north east Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134: 330-342. https://doi.org/10.1016/j.pocean.2015.03.003
Astitha M., Kallos G., Spyrou C., et al. 2010. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean potential impacts. Atmos. Chem. Phys. 10: 5797-5822. https://doi.org/10.5194/acp-10-5797-2010
Barton E.D., Arístegui J., Tett P., et al. 1998. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 41: 455-504. https://doi.org/10.1016/S0079-6611(98)00023-8
Basart S., Pérez C., Nickovic S., et al. 2012. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B 64: 1-23. https://doi.org/10.3402/tellusb.v64i0.18539
Bauerfeind E., von Bodungen B. 2006. Underestimation of biogenic silicon flux due to dissolution in sediment trap samples. Mar. Geol. 226: 297-306. https://doi.org/10.1016/j.margeo.2005.11.001
Berelson W.M. 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II 49: 237-251. https://doi.org/10.1016/S0967-0645(01)00102-3
Blott S.J., Pye K. 2008. Particle shape: a review and new methods of characterization and classification. Sedimentology 55: 31-63.
Bory A.J.-M., Newton P.P. 2000. Transport of airborne lithogenic material down through the water column in two contrasting regions of the eastern subtropical North Atlantic Ocean. Global Biogeochem. Cycles 14: 297-315. https://doi.org/10.1029/1999GB900098
Bressac M., Guieu C., Doxaran D., et al. 2012. A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters, Geo-Mar. Lett. 32: 153-164. https://doi.org/10.1007/s00367-011-0269-4
Bressac M., Guieu C., Doxaran D., et al. 2014. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms, Biogeosciences 11: 1007-1020. https://doi.org/10.5194/bg-11-1007-2014
Brust J., Waniek J.J. 2010. Atmospheric dust contribution to deep-sea particle fluxes in the subtropical Northeast Atlantic. Deep- Sea Res. I 57: 988-998. https://doi.org/10.1016/j.dsr.2010.04.011
Buesseler K.O., Antia A.N., Chen M., et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65: 345-416. https://doi.org/10.1357/002224007781567621
De Leeuw G., Guieu C., Arneth A., et al. 2014. Ocean-Atmosphere Interactions of Particles. In: Liss P.S., Johnson M.T. (eds), Ocean-Atmosphere Interactions of Gases and Particles, Springer, pp. 171-246. https://doi.org/10.1007/978-3-642-25643-1_4
Dong H.-P., Wang D.-Z., Dai M., et al. 2010. Characterization of particulate organic matter in the water column of the South China Sea using a shotgun proteomic approach. Limnol. Oceanogr. 55: 1565-1578. https://doi.org/10.4319/lo.2010.55.4.1565
Engelbrecht J.P., Menendez I., Derbyshire E. 2014. Sources of PM2.5 impacting on Gran Canaria, Spain. Catena 117: 119-132. https://doi.org/10.1016/j.catena.2013.06.017
Elder L.E., Hsiang A.Y., Nelson K., et al. 2018. Data Descriptor: Sixty-one thousand recent planktonic foraminifera from the Atlantic Ocean. Sci. Data 5: 180109. https://doi.org/10.1038/sdata.2018.109 PMid:30152812 PMCid:PMC6111889
Fischer G., Karakas G. 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon fluxes to the deep ocean. Biogeosciences 6: 85-102. https://doi.org/10.5194/bg-6-85-2009
Fischer G., Neuer S., Wefe G., et al. 1996. Short-term sedimentation pulses recorded with a fluorescence sensor and sediment traps at 900 m depth in the Canary basin, Limnol. Oceanogr. 41: 1354-1359. https://doi.org/10.4319/lo.1996.41.6.1354
Freudenthal T., Neuer S., Meggers H., et al. 2001. Influence of lateral particle advection and organic matter degradation on sediment accumulation and stable nitrogen isotope ratios along a productivity gradient in the Canary Islands region. Mar. Geol. 177: 93-109. https://doi.org/10.1016/S0025-3227(01)00126-8
Haustein K., Pérez C., Baldasano J.M., et al. 2012. Atmospheric dust modelling from meso to global scales with the online NMMB/BSC-Dust model-Part 2: Experimental campaigns in Northern Africa. Atmos. Chem. Phys. 12: 2933-2958. https://doi.org/10.5194/acp-12-2933-2012
Helmke P., Neuer S., Lomas M.W., et al. 2010. Cross-basin differences in particulate organic carbon export and flux attenuation in the subtropical North Atlantic gyre. Deep-Sea Res. I 57: 213-227. https://doi.org/10.1016/j.dsr.2009.11.001
Hernández-León S., Almeida C., Bécognée P., et al. 2004. Zooplankton biomass and indices of grazing and metabolism during a late winter bloom in subtropical waters. Mar. Biol. 145: 1191-1200. https://doi.org/10.1007/s00227-004-1396-5
Hernández-León S., Gómez M., Arístegui J. 2007. Mesozooplankton in the Canary Current System: The coastal-ocean transition zone. Prog. Oceanogr. 74: 397-421. https://doi.org/10.1016/j.pocean.2007.04.010
Herrera I., López-Cancio J., Yebra L., et al. 2017. The effect of a strong warm winter on subtropical zooplankton biomass and metabolism. J. Mar. Res. 75: 557-577. https://doi.org/10.1357/002224017822109523
Honjo S., Spencer D.W., Farrington J.W. 1982. Deep Advective Transport of Lithogenic particles in Panama Basin. Science 216: 516-518. https://doi.org/10.1126/science.216.4545.516 PMid:17735741
Huskin I., Viesca L., Anadón R. 2004. Particle flux in the Subtropical Atlantic near the Azores: influence of mesozooplankton. J. Plankton Res. 26: 403-415. https://doi.org/10.1093/plankt/fbh031
Jackson G.A., Checkley D.M., Dagg M. 2015. Settling of particles in the upper 100 m of the ocean detected with autonomous profiling floats off California. Deep-Sea Res. I 99: 75-86. https://doi.org/10.1016/j.dsr.2015.02.001
Jaramillo A., Menéndez I., Alonso I., et al. 2011. Textural and mineralogical characterization of terrigenous material from atmospheric inputs in the Canary basin. Published as a master thesis, Universidad de Las Palmas de Gran Canaria, 31 pp.
Jaramillo A., Menéndez I., Alonso I., et al. 2016. Grainsize, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer. Sci. Mar. 80: 395-408. https://doi.org/10.3989/scimar.04344.27A
Jickells T.D., An Z.S., Andersen K.K., et al. 2005. Global iron connections between desert dust, ocean biochemistry, and climate. Science 308: 67-71. https://doi.org/10.1126/science.1105959 PMid:15802595
Journet E., Desboeufs K.V., Caquineau S., et al. 2008. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35: L07805. https://doi.org/10.1029/2007GL031589
Korte L.F., Brummer G.-J., van der Does M., et al. 2016. Compositional changes of present-day transatlantic Saharan dust deposition, Atmos. Chem. Phys. 17: 6023-6040. https://doi.org/10.5194/acp-2016-1068
Maeda N., Noriki S., Narita H. 2007. Grainsize, La/Yb and Th/ Sc of settling particles in the Western North Pacific: Evidence for Lateral Transport of Small Asian Loess. J. Oceanogr. 63: 803-813. https://doi.org/10.1007/s10872-007-0068-8
Mari X., Passow U., Migon C., et al. 2017. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151: 13-37. https://doi.org/10.1016/j.pocean.2016.11.002
Martinez-Ruiz F., Paytan A., Gonzalez-Muñoz M.T., et al. 2019. Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chem. Geol. 511: 441-451. https://doi.org/10.1016/j.chemgeo.2018.09.011
Menéndez I., Derbyshire E., Engelbrecht J., et al. 2009. Saharan dust and aerosols on the Canary Islands: past and present. In: Chang M., Liu W. (eds), Airborne Particulates, Nova Publishers Inc., New York, pp. 39-80.
Menéndez I., Derbyshire E., Carrillo T., et al. 2017. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold values in the northern sector of Gran Canaria, Spain. Int. J. Environ. Health Res. 27: 144-160. https://doi.org/10.1080/09603123.2017.1292496 PMid:28245676
Michaels A.F., Silver M.W. 1988. Primary production, sinking flux and the microbial food web. Deep-Sea Res. 35: 473-490. https://doi.org/10.1016/0198-0149(88)90126-4
Milliman J.D., Syvitsku J.P.M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100: 525-544. https://doi.org/10.1086/629606
Montgomery M.T., Welschmeyer N.A., Kirchman D.L. 1990. A simple assay for chitin: application to sediment trap samples from the subarctic Pacific. Mar. Ecol. Prog. Ser. 64: 301-308. https://doi.org/10.3354/meps064301
Müller P., Schneider R. 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res. 40: 425-444. https://doi.org/10.1016/0967-0637(93)90140-X
Neuer S., Ratmeyer V., Davenport R., et al. 1997. Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term satellite derived pigment data and lateral sources. Deep-Sea Res. I 44: 1451-1466. https://doi.org/10.1016/S0967-0637(97)00034-4
Neuer S., Freudenthal T., Davenport B., et al. 2002. Seasonality of surface water properties and particle flux along a productivity gradient off NW Africa. Deep-Sea Res. II 49: 3561-3576. https://doi.org/10.1016/S0967-0645(02)00098-X
Neuer S., Torres-Padrón M.E., Gelado-Caballero M.D., et al. 2004. Dust deposition pulses to the eastern subtropical North Atlantic gyre: Does ocean's biogeochemistry respond? Global Biogeochem. Cycles 18: 1451-1466. https://doi.org/10.1029/2004GB002228
Okada K., Heintzenberg J., Kai K., et al. 2001. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett. 28: 3123-3126. https://doi.org/10.1029/2000GL012798
Otosaka S., Togawa O., Baba M., et al. 2004. Lithogenic flux in the Japan Sea measured with sediment traps. Mar. Chem. 91: 143-163. https://doi.org/10.1016/j.marchem.2004.06.006
Pakulski J.D., Benner R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39: 930-940. https://doi.org/10.4319/lo.1994.39.4.0930
Passow U. 2000. Formation of Transparent Exopolymer Particles, TEP, from dissolved precursor material. Mar. Ecol. Prog. Ser. 192: 1-11. https://doi.org/10.3354/meps192001
Passow U. 2002. Transparent Exopolymer Particles (TEP) in aquatic environments. Prog. Oceanogr. 55: 287-333. https://doi.org/10.1016/S0079-6611(02)00138-6
Pérez C., Haustein K., Janjic Z., et al. 2011. An online mineral dust aerosol model for meso to global scales: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 11: 13001-13027. https://doi.org/10.5194/acp-11-13001-2011
Ratmeyer V., Fischer G., Wefer G. 1999. Lithogenic particle fluxes and grainsize distributions in the deep ocean off northwest Africa: Implications for seasonal changes of aeolian dust input and downward transport. Deep-Sea Res. I 46: 1289-1337. https://doi.org/10.1016/S0967-0637(99)00008-4
Reid E.A., Reid J.S., Meier M.M., et al. 2003. Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res. 108: 8591. https://doi.org/10.1029/2002JD002935
Røstad A., Kaartvedt S. 2013. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder. Limnol. Oceanogr. 58: 1985-1997. https://doi.org/10.4319/lo.2013.58.6.1985
Sangrà P., Pascual A., Rodríguez-Santana A., et al. 2009. The Canary Eddy Corridor: a major pathway for long-lived eddies in the North Atlantic. Deep-Sea Res I 56: 2100-2114. https://doi.org/10.1016/j.dsr.2009.08.008
Sarnthein M., Thiede J., Pflaumann U., et al. 1982. Atmospheric and Oceanic Circulation Patterns off Northwest Africa During the Past 25 Million Years. In: von Rad U., Hinz K. et al. (eds), Geology of the Northwest African Continental Margin. Springer, Berlin Heidelberg, pp. 545-604. https://doi.org/10.1007/978-3-642-68409-8_24
Souza C.P., Almeida B.C., Colwell R.R., et al. 2011. The importance of chitin in the marine environment. Mar. Biotechnol. 13: 823-830. https://doi.org/10.1007/s10126-011-9388-1 PMid:21607543
Sprengel C., Baumann K.-H., Neuer S. 2000. Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29°N 15°W). Mar. Micropaleontol. 39: 157-178. https://doi.org/10.1016/S0377-8398(00)00019-0
Sprengel C., Baumann K.-H., Henderiks J., et al. 2002. Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Island region: seasonal export production and surface accumulation rates. Deep-Sea Res. II 49: 3577-3598. https://doi.org/10.1016/S0967-0645(02)00099-1
Turner J.T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog. Oceanogr. 130: 205-248. https://doi.org/10.1016/j.pocean.2014.08.005
van der Jagt H., Friese C., Stuut J.-B., et al. 2018. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 9. https://doi.org/10.1002/lno.10779
Wadell H. 1934. Some new sedimentation formulas. J. Appl. Phys. 5: 281-291. https://doi.org/10.1063/1.1745211
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.