Maternal influence on the larval morphometry of the brush-clawed shore crab Hemigrapsus takanoi (Decapoda: Brachyura)

Authors

  • José M. Landeira Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad asociada ULPGC-CSIC - Department of Ocean Sciences, Tokyo University of Marine Science and Technology https://orcid.org/0000-0001-6419-2046
  • Effrosyni Fatira Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Unidad asociada ULPGC-CSIC https://orcid.org/0000-0001-8004-1504
  • Kana Banno Department of Ocean Sciences, Tokyo University of Marine Science and Technology - Department of Biological Sciences Ålesund, Norwegian University of Science and Technolog https://orcid.org/0000-0003-0850-1785
  • Yuji Tanaka Department of Ocean Sciences, Tokyo University of Marine Science and Technology https://orcid.org/0000-0003-3407-1336

DOI:

https://doi.org/10.3989/scimar.05327.066

Keywords:

brood, life history, phenotype, size, spines, zoea

Abstract


The morphology of larvae is a key factor influencing their behaviour, performance and ultimately their survival. There is evidence indicating a significant morphological variability among broods, and that this may be related to the size or conditions of the mother. However, this maternal influence is not consistent across decapod crustaceans. Using 35 broods from different mothers of the crab Hemigrapsus takanoi collected in the same locality of inner Tokyo Bay and at the same time, we tested the hypothesis that there is a positive relationship between the size of the mother and the progeny’s morphology. Our results indicate that different patterns in the length of the lateral, rostral and dorsal spines differentiated two distinct morphogroups of larvae. These morphogroups were linked to the size of the mother, showing that larger mothers produced bigger larvae with longer carapace spines. It is possible that larger size and longer spines can influence swimming performance and predator avoidance, respectively. These relationships should be tested in future experimental studies.

Downloads

Download data is not yet available.

References

Anger K. 2001. The Biology of Decapod Crustacean Larvae. Crustacean Issues, vol 14. A. A. Balkema, Rotterdam

Asakura A., Watanabe S. 2005. Hemigrapsus takanoi new species, a sibling species of the common Japanese intertidal crab H. penicillatus (Decapoda: Brachuyra: Grapsoidea). J. Crust. Biol. 25: 279-292. https://doi.org/10.1651/C-2514

Bashevkin S.M., Christy J.H., Morgan S.G. 2020. Adaptive specialization and constraint in morphological defences of planktonic larvae. Funct. Ecol. 34: 217-228. https://doi.org/10.1111/1365-2435.13464

Caracappa J.C., Munroe D.M. 2018. Morphological variability among broods of first-stage blue crab (Callinectes sapidus) zoeae. Biol. Bull. 235: 123-133. https://doi.org/10.1086/699922 PMid:30624119

Caracappa J.C., Munroe D.M. 2019. Variability in swimming behavior among broods of blue crab (Callinectes sapidus) zoeae. J. Exp. Mar. Biol. Ecol. 518: 151176. https://doi.org/10.1016/j.jembe.2019.151176

Charpentier C.L., Wright A.J., Cohen J.H. 2017. Fish kairomones induce spine elongation and reduce predation in marine crab larvae. Ecology 98: 1989-1995. https://doi.org/10.1002/ecy.1899 PMid:28512864

Clarke K.R., Gorley R.N. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth.

Eggleston D.B., Armstrong D.A. 1995. Pre- and post-settlement determinants of estuarine Dungeness crab recruitment. Ecol. Monogr. 65: 193-216. https://doi.org/10.2307/2937137

Fox C.W., Czesak M.E. 2000. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 45: 341-369. https://doi.org/10.1146/annurev.ento.45.1.341 PMid:10761581

González-Ortegón E., Giménez L. 2014. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502: 185-195. https://doi.org/10.3354/meps10708

González-Ortegón E., Vay L. Le, Walton M.E.M.K., Giménez L. 2018. Maternal trophic status and offspring phenotype in a marine invertebrate. Sci. Rep. 8: 1-9. https://doi.org/10.1038/s41598-018-27709-2 PMid:29941878 PMCid:PMC6018471

Kruskal W.H., Wallis W.A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47: 583-621. https://doi.org/10.1080/01621459.1952.10483441

Landeira J.M., Matsuno K., Yamaguchi A., et al. 2017. Abundance, development stage, and size of decapod larvae through the Bering and Chukchi Seas during summer. Polar Biol. 40: 1805-1819. https://doi.org/10.1007/s00300-017-2103-6

Landeira J.M., Cuesta J.A., Tanaka Y. 2019. Larval development of the brush-clawed shore crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae). J. Mar. Biol. Assoc. U.K. 99: 1153-1164. https://doi.org/10.1017/S002531541900002X

Landeira J.M., Liu B., Omura T., et al. 2020. Salinity effects on the first larval stage of the invasive crab Hemigrapsus takanoi: Survival and swimming patterns. Estuar. Coast. Shelf Sci. 245: 106976. https://doi.org/10.1016/j.ecss.2020.106976

Makino W., Miura O., Kaiser F., et al. 2018. Evidence of multiple introductions and genetic admixture of the Asian brush-clawed shore crab Hemigrapsus takanoi (Decapoda: Brachyura: Varunidae) along the Northern European coast. Biol. Invasions 20: 825-842. https://doi.org/10.1007/s10530-017-1604-0

Marco-Herrero E., Rodríguez A., Cuesta J.A. 2012. Morphology of the larval stages of Macropodia czernjawskii (Brandt, 1880) (Decapoda, Brachyura, Inachidae) reared in the laboratory. Zootaxa 3338: 33-48. https://doi.org/10.11646/zootaxa.3338.1.2

Marshall D.J., Bonduriansky R., Bussière L.F. 2008. Offspring size variation within broods as a bet-hedging strategy in unpredictable environments. Ecology 89: 2506-2517. https://doi.org/10.1890/07-0267.1 PMid:18831172

Mingkid W.M., Yokota M., Watanabe S. 2006. Salinity tolerance of larvae in the Penicillate crab Hemigrapsus takanoi (Decapoda: Brachyura: Grapsidae). La mer 44: 17-21.

Moland E., Olsen E.M., Stenseth N.C. 2010. Maternal influences on offspring size variation and viability in wild European lobster, Homarus gammarus. Mar. Ecol. Prog. Ser. 400: 165-173. https://doi.org/10.3354/meps08397

Nour O.M., Stumpp M., Lugo S.C.M., et al. 2020. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15: 297-317. https://doi.org/10.3391/ai.2020.15.2.06

Oliphant A., Thatje S. 2021. Variable shrimp in variable environments: reproductive investment within Palaemon varians. Hydrobiologia 848: 469-484. https://doi.org/10.1007/s10750-020-04455-z

Park S., Epifanio C.E., Grey E.K. 2004. Behavior of larval Hemigrapsus sanguineus (de Haan) in response to gravity and pressure. J. Exp. Mar. Biol. Ecol. 307: 197-206. https://doi.org/10.1016/j.jembe.2004.02.007

Pepin P. 1989. Predation and starvation of larval fish: A numerical experiment of size and growth-dependent survival. Biol. Oceanogr. 6: 23-44.

Pettersen A.K., White C.R., Marshall D.J. 2015. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory. Proc. Royal Soc. B. 282: 20151946. https://doi.org/10.1098/rspb.2015.1946 PMid:26559952 PMCid:PMC4685814

Queiroga H., Blanton J. 2005. Interactions between behavior and physical forcing in the control of horizontal transport of decapod crustacean larvae. Adv. Mar. Biol. 47: 107-213. https://doi.org/10.1016/S0065-2881(04)47002-3 PMid:15596167

Sato T., Suzuki N. 2010. Female size as a determinant of larval size, weight, and survival period in the coconut crab, Birgus latro. J. Crust. Biol. 30: 624-628. https://doi.org/10.1651/10-3279.1

Sato T., Hamano K., Sugaya T., Dan S. 2017. Effects of maternal influences and timing of spawning on intraspecific variations in larval qualities of the Kuruma prawn Marsupenaeus japonicus. Mar. Biol. 164: 70. https://doi.org/10.1007/s00227-017-3118-9

Shinji J., Strüssmann C.A., Wilder M.N., Watanabe S. 2009. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: osmoregulation, oxygen consumption, and ammonia excretion. J. Crust. Biol. 29: 269-272. https://doi.org/10.1651/08-2998R.1

Shirley S.M., Shirley T.C., Rice S.D. 1987. Latitudinal variation in the Dungeness crab, Cancer magister: zoeal morphology explained by incubation temperature. Mar. Biol. 95: 371-376. https://doi.org/10.1007/BF00409567

Smith A.E., Jensen G.C. 2015. The role of carapace spines in the swimming behavior of porcelain crab zoeae (Crustacea: Decapoda: Porcellanidae). J. Exp. Mar. Biol. Ecol. 471: 175-179. https://doi.org/10.1016/j.jembe.2015.06.007

Swiney K.M., Eckert G.L., Kruse G.H. 2013. Does maternal size affect red king crab, Paralithodes camtschaticus, embryo and larval quality? J. Crust. Biol. 33: 470-480. https://doi.org/10.1163/1937240X-00002162

Urzúa Á., Anger K. 2013. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching. Helgol. Mar. Res. 67: 267-277. https://doi.org/10.1007/s10152-012-0321-4

Urzúa Á., Bascur M., Guzmán F., Urbina M. 2018. Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 217: 55-62. https://doi.org/10.1016/j.cbpa.2018.01.001 PMid:29317315

Weiss M., Thatje S., Heilmayer O. 2010. Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab Cancer setosus across latitude. Helgol. Mar. Res. 64: 125-133. https://doi.org/10.1007/s10152-009-0173-8

Published

2023-07-04

How to Cite

1.
Landeira JM, Fatira E, Banno K, Tanaka Y. Maternal influence on the larval morphometry of the brush-clawed shore crab Hemigrapsus takanoi (Decapoda: Brachyura). Sci. mar. [Internet]. 2023Jul.4 [cited 2024Apr.28];87(2):e066. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1958

Issue

Section

Articles

Funding data

Japan Society for the Promotion of Science
Grant numbers PE16401;16F16401

Ministerio de Educación y Formación Profesional
Grant numbers BEAGAL 18/00172

H2020 Marie Skłodowska-Curie Actions
Grant numbers 101090322 PLEASE