Shell use by the hermit crab Calcinus californiensis at different levels of the intertidal zone


  • Elsah Arce Programa de Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México
  • Guillermina Alcaraz Laboratorio de Ecofisiología, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México



gastropod shell, hermit crab, Calcinus californiensis, waves, Olmstead-Tukey, intertidal


The gastropod shell use of the hermit crab Calcinus californiensis was studied at Troncones, Guerrero, México. Hermit crabs were captured at two different levels of the intertidal zone, in wave-protected and wave-exposed sites. C. californiensis occupied shells of 18 gastropod species. At both wave-action sites, Cantharus sanguinolentus was the most occupied shell. Columbella sp. was used more by females than by males, and Nerita scabricosta was more used by males. The frequency of use of the shells was different between the different wave sites. N. scabricosta and Columbella sp. were occupied more at the wave-protected than at the exposed sites; C. sanguinolentus and Stramonita biserialis were occupied more at the exposed sites. The hermit crabs at the wave-exposed sites occupied heavier and thicker shells compared with the crabs from the protected sites. The Olmstead-Tukey diagram showed eight shell species as dominant in the wave-protected sites, and seven in the wave-exposed sites. Ten shell species were rare in the wave-protected sites, and six in the wave-exposed sites. The rare shells occupied by the hermit crabs were relatively heavier than the dominant shells in both site types. Our results suggest that the shell weight is important in sites that are greatly affected by the hydrodynamics.


Download data is not yet available.


Abbott, R.T. – 1996. A guide to field identification sea shells of North America. Nueva York, USA.

Alcaraz, G. and K. Kruesi. – 2009. The role of previous shell occupancy in the wild on laboratory shell choice by hermit crab Calcinus californiensis. Mar. Fresh. Behav. Physiol., 42(1): 55-62. doi:10.1080/10236240802663564

Angel, J.E. – 2000. Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say). J. Exp. Mar. Biol. Ecol., 243: 169-184. doi:10.1016/S0022-0981(99)00119-7

Argüelles, T.A., F. Álvarez and G. Alcaraz. – 2009. Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under varying conditions of wave action. Sci. Mar., 73(4): 717-723.

Argüelles-Ticó, A., F. Álvarez and G. Alcaraz. – 2010. Shell utilization by the hermit crab Clibanarius antillensis (Crustacea, Anomura) in intertidal rocky pools at Montepio, Veracruz Mexico. Trop. Zool., 23: 63-73.

Asakura, A. – 1995. Sexual differences in life history and resource utilization by the hermit crab. Ecol. Soc. Am., 76(7): 2295-2313.

Avery, R. and R.J. Etter. – 2006. Microstructural differences in the reinforcement of gastropod shell against predation. Mar. Ecol. Prog. Ser., 323: 159-170. doi:10.3354/meps323159

Ayres-Peres, L., C.C. Sokolowicz, C.B. Kotzian, P.J. Rieger and S. Santos. – 2008. Ocupação de conchas de gastrópodes por ermitões (Decapoda, Anomura) no litoral de Rio Grande, Rio Grande do Sul, Brasil. Iheringia, Sér. Zool., 98(2): 218-224.

Bertness, M. D. – 1981a. The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana, 40(2): 197-205. doi:10.1163/156854081X00598

Bertness, M.D. – 1981b. Predation, physical stress, and the organization of a tropical rocky intertidal hermit crab community. Ecology, 62: 411-425. doi:10.2307/1936715

Biagi, R., A.L. Meireles and F.L. Mantelatto. – 2006. Bio-ecological aspects of the hermit crab Paguristes calliopsis (Crustacea, Diogenidae) from Anchieta Island, Brazil. An. Acad. Bras. Ciênc., 78(3): 451-462. PMid:16936935

Blamey, L.K. and G.M. Branch. – 2009. Habitat diversity relative to wave action on rocky shores: implications for the selection of marine protected areas. Aquatic. Conserv. Freshw. Ecosyst., 19: 645-647. doi:10.1002/aqc.1014

Borjesson, D.L. and W.A. Szelistowski. – 1989. Shell selection, utilization and predation in the hermit crab Clibanarius panamensis Stimpson in a tropical mangrove estuary. J. Exp. Mar. Biol. Ecol., 133: 213-228. doi:10.1016/0022-0981(89)90046-4

Botelho, A.Z. and A.C. Costa. – 2000. Shell occupancy of the intertidal hermit crab Clibanarius erythropus (Decapoda, Diogenidae) on São Miguel (Azores). Hydrobiologia, 440: 111-117. doi:10.1023/A:1004190220509

Branch, G.M., F. Odendaal and T.M. Robinson. – 2008. Long-term monitoring of the arrival expansion and effects of the alien mussel Mytilus galloprovincialis relative to wave action. Mar. Ecol. Prog. Ser., 370: 171-183. doi:10.3354/meps07626

Bromley, R.G. and C. Heinberg. – 2006. Attachment strategies of organisms on hard substrates: A paleontological view. Paleogeogr. Palaeocl., 232: 429-453. doi:10.1016/j.palaeo.2005.07.007

Bustamante, R.H., G.M. Branch and S. Eekhout. – 1997. The influences of physical factors on the distribution and zonation patterns of South African rocky-shore communities. S. Afr. J. Mar. Sci., 18:119-136.

Carlson, R.L., M.J. Shulman and J.C. Ellis. – 2006. Factors contributing to spatial heterogeneity in the abundance of the common periwinkle Littorina littorea (L.). J. Mollus. Stud., 72(2): 149-156. doi:10.1093/mollus/eyi059

Caruso, T. and R. Chemello. – 2009. The size and shape of shells used by hermit crabs: A multivariate analysis of Clibanarius erythropus. Acta Oecol., 35: 349-354. doi:10.1016/j.actao.2009.03.002

Donovan, D., J. Baldwin and T. Carefoot. – 1999. The contribution of anaerobic energy to gastropod crawling and re-estimation of minimum cost of transport in the abalone, Haliotis kamtschtkana (Jonas). J. Exp. Mar. Biol. Ecol., 235: 273-284. doi:10.1016/S0022-0981(98)00174-9

Edgell, T.C. and R. Rochette. – 2008. Differential snail predation by an exotic crab and the geography of shell-claw covariance in the northwest Atlantic. Evolution, 62(5): 1216-1228. doi:10.1111/j.1558-5646.2008.00350.x PMid:18298647

Elwood, R.W., N. Marks and J.T.A. Dick. – 1995. Consequences of shell-species preferences for female reproductive success in the hermit crab Pagurus bernhardus. Mar. Biol., 123: 431-434. doi:10.1007/BF00349221

Fotheringham, N. – 1976. Hermit crab shells as a limiting resource (Decapoda, Paguridea). Crustaceana, 31: 193-200. doi:10.1163/156854076X00233

Gherardi, F. – 1991. Relative growth, population structure and shell utilization of the hermit crab Clibanarius erythropus in the Mediterranean. Oebalia, 17: 181-196.

Hahn, D.R. – 1998. Hermit crab shell use patterns: response to previous shell experience and to water flow. J. Exp. Mar. Biol. Ecol., 228: 35-51. doi:10.1016/S0022-0981(98)00002-1

Hazlett, B.A. – 1981. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst., 12: 1-22. doi:10.1146/

Herreid, C.F. and R.J. Full. – 1986. Locomotion of hermit crabs (Coenobita compressus) on beach and treadmill. J. Exp. Mar. Biol. Ecol., 120: 283-296.

Keen, M.A. – 1971. Sea shells of tropical West America. Stanford, USA.

Kellogg, C.W. – 1976. Gastropod shells: a potentially limiting resource for hermit crabs. J. Exp. Mar. Biol. Ecol., 22(1): 101-111. doi:10.1016/0022-0981(76)90112-X

Kellogg, C.W. – 1977. Coexistence in a hermit crab species ensemble. Biol. Bull., 153: 133-144. doi:10.2307/1540697 PMid:889942

Kelly, S.A., A.B. MacDiarmid and R. C. Babcock. – 1999. Characteristics of spiny lobsters, Jasus edwardsii. Mar. Freshw. Res., 52: 323-331. doi:10.1071/MF00028

Landa-Jaime,V. – 2003. Asociación de moluscos bénticos del sistema lagunar estuarino Agua Dulce/El Ermitaño, Jalisco, México. Cien. Mar., 29(2): 169-184.

Lam, K.K.Y. – 2002. Escape responses of intertidal gastropods on a subtropical rocky shore in Hong Kong. J. Mollus. Stud., 68: 297-306. doi:10.1093/mollus/68.4.297

Lau, W.W.Y. and M.M. Martinez. – 2003. Getting a grip on the intertidal: flow microhabitat and substratum type determine the dislodgement of the crab Pachygrapsus crassipes (Randall) on rocky shores and estuaries. J. Exp. Mar. Biol. Ecol., 295: 1-21. doi:10.1016/S0022-0981(03)00276-4

Litulo, C. – 2005. Population biology and fecundity of the Indo-Pacific hermit crab Clibanarius longitarsus (Anomura: Diogenidae). J. Mar. Biol., 85: 121-125. doi:10.1017/S0025315405010921h

Lowery, W.A. and W.G. Nelson. – 1988. Population ecology of the hermit crab Clibanarius vittatus (Decapoda: Diogenidae) at Sebastian Inlet, Florida. J. Crust. Biol., 4: 548-556. doi:10.2307/1548691

Mantelatto, F.L.M. and L.C.C. Dominciano. – 2002. Pattern of shell utilization by the hermit crab Paguristes tortugae (Diogenidae) from Anchieta Island, southern Brazil. Sci. Mar., 66(33): 265-272.

Martinez, M., R.J. Full, and M.A.R. Koehl. – 1998. Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water. J. Exp. Biol., 201: 2609-2623. PMid:9716513

Martinez, M. 2001. – Running in the surf: hydrodynamics of the shore crab Grapsus tenuicrustatus. J. Exp. Biol., 204: 3097-3112. PMid:11551997

Menge, B.A. – 1978. Predation intensity in a rocky intertidal community: effect of an algal canopy, wave action and desiccation on predator feeding rates. Oecologia, 34: 17-35. doi:10.1007/BF00346238

Miller, L.P. – 2007. Feeding in extreme flows: behavior compensates for mechanical constraints in barnacle cirri. Mar. Ecol. Prog. Ser., 349: 227-234. doi:10.3354/meps07099

Morris, A.P. – 1969. A field guide to Pacific Coast Shells. Houghton Mich., USA.

Olmstead, P.S. and J.W. Tukey. – 1947. A corner test for association. Ann. Math. Stat., 18(4): 495-513. doi:10.1214/aoms/1177730341

Osorno, J.L., L. Fernández-Casillas and C. Rodríguez-Juárez. – 1998. Are hermit crabs looking for light and large shells?: Evidence from natural and field induced shell exchanges. J. Exp. Mar. Biol. Ecol., 222: 163-173. doi:10.1016/S0022-0981(97)00155-X

Poupin, J. and J.M. Bouchard. – 2006. The eastern Pacific species of the genus Calcinus Dana, 1851, with description of a new species from Clipperton Island (Decapoda, Anomura, Diogenidae). Zoosyst., 28(2): 465-486.

Powers, S.P. and J.N. Kittinger. – 2002. Hydrodynamic mediation of predator-prey interactions: differential patterns of prey susceptibility and predatory success explained by variation in water flow. J. Exp. Mar. Biol. Ecol., 273: 171-187. doi:10.1016/S0022-0981(02)00162-4

Reese, E.S. – 1969. Behavioral adaptations of intertidal hermit crabs. Am. Zool., 9: 343-355.

Rilov, G., B. Yehuda, and A. Gasith. – 2004. Life on the edge: do biomechanical and behavioral adaptations to wave-exposure correlate with habitat partitioning in predatory whelks? Mar. Ecol. Prog. Ser., 282: 193-204. doi:10.3354/meps282193

Robles, C.D. M.A. Alvarado, and R.A. Desharnais. – 2001. The shifting balance of littoral predator-prey interaction in regimes of hydrodynamic stress. Oecologia, 128: 142-152. doi:10.1007/s004420100638

Rotjan, R.D., J. Blum, and S.M. Lewis. – 2004. Shell choice in Pagurus longicarpus hermit crabs: dies predation threat influence shell selection behavior? Behav. Ecol. Sociobiol., 56: 171-176. doi:10.1007/s00265-004-0770-0

Sallam, W.S., F.L. Mantelatto, and M.H. Hanafy. – 2008. Shell utilization by the land hermit crab Coenobita scaevola (Anomura, Coenobitidae) from Wadi El-Gemal, Red Sea. Belg. J. Zool., 138(1): 13-19.

Sant’Anna, B.S., C.M. Zangrande, A.L.D. Reigada, and M.A.A. Pinheiro. – 2006. Shell utilization pattern of the hermit crab Clibanarius vittatus (Crustacea, Anomura) in an estuary at São Vicente, State of São Paulo, Brazil. Iheringia, Sér. Zool., 96(2): 261-266.

Scully, E.P. – 1979. The effects of gastropod shell availability and habitat characteristics on shell utilization by the intertidal hermit crab Pagurus longicarpus Say. J. Exp. Mar. Biol. Ecol., 37: 139-152. doi:10.1016/0022-0981(79)90091-1

Skoglund, C. – 2001. Panamic Province Molluscan Literature. Additions and changes from 1971 through 2001. III Gastropoda. The festivus (Suplement).

Terossi, M., D.L.A. Espósito, A.L. Meireles, R. Biagi, and F.L. Mantelatto. – 2006. Pattern of shell occupation by the hermit crab Pagurus exilis (Anomura, Paguridae) on the northern coast of São Paulo State, Brazil. J. Nat. Hist., 40(1-2): 77-87. doi:10.1080/00222930600617989

Trussell, G.C. – 1996. Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution, 50(1): 448-454. doi:10.2307/2410815

Turra, A. and F.P.P. Leite. – 2004. Shell-size selection by intertidal sympatric hermit crabs. Mar. Biol., 145: 251-257. doi:10.1007/s00227-004-1323-9

Turra, A. – 2005. Reproductive behavior of intertidal hermit crabs (Decapoda, Anomura) in Southeastern Brazil. Rev. Bras. Zool., 22: 313-319. doi:10.1590/S0101-81752005000200003

Vance, R.R. – 1972. The role of shell adequacy in behavioral interactions involving hermit crabs. Ecology, 53: 1075-1083. doi:10.2307/1935419

Yoshino, K. and S. Goshima. – 2001. Functional roles of gastropod shells in the hermit crab Pagurus filholi: effects of shell size and species on fitness. Benthos Res., 56: 87-93.

Yoshino, K., M. Ozawa, and S. Goshima. – 2004. Effects of shell size fit on the efficacy of mate guarding behavior in male hermit crabs. J. Mar. Biol., 84: 1203-1208. doi:10.1017/S0025315404010653h




How to Cite

Arce E, Alcaraz G. Shell use by the hermit crab Calcinus californiensis at different levels of the intertidal zone. scimar [Internet]. 2011Mar.30 [cited 2022Sep.30];75(1):121-8. Available from: