Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under different wave action conditions

Authors

  • Araceli Argüelles Facultad de Ciencias, Universidad Nacional Autónoma de México
  • Fernando Álvarez Instituto de Biología, Universidad Nacional Autónoma de México
  • Guillermina Alcaraz Facultad de Ciencias, Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.3989/scimar.2009.73n4717

Keywords:

hermit crabs, hydrodynamics, Clibanarius antillensis, gastropod shell, intertidal, rocky shore

Abstract


We studied the intertidal hermit crab Clibanarius antillensis at Montepio Beach, Veracruz, Mexico, to determine whether architecture and weight of occupied shells varied with the degree of exposure to wave action. Data on shell use were obtained from 30-m transects perpendicular to the shoreline. The gastropod shells species used by C. antillensis were classified into four groups according to their morphology: neritiform, conical, turriculate, and turbinate. Neither the size nor the weight of hermit crabs varied along transects. A pattern showing differential use of shell type according to water velocity was detected. Neritiform and turriculate shells were the least occupied, and their abundance decreased with increasing water velocities. Conical and turbinate shells were the most used and their presence increased with increasing water velocities. Turbinate and conical shells are heavier and have a higher weight/exposed-area ratio than neritiform and turriculate shells, so using them at higher energy sites seems to be more advantageous than using turriculate shells. The pattern that emerges is one in which C. antillensis occupy different shells along the intertidal transect, probably due to the advantages that different shells may bring, such as minimising drag and the risk of dislodgement.

Downloads

Download data is not yet available.

References

Abbott, R.T. and P.A. Morris. – 1995. A field guide to shells of the Atlantic and Gulf Coasts and West Indies. Houghton Mifflin Company, Boston.

Abele, L.G. and W. Kim. – 1986. An illustrated guide to the marine Decapod Crustaceans of Florida. Dept. Environ. Reg. Tech. Ser., 8: 1-760.

Alcaraz, G. and K. Kruesi. – 2009. The role of previous shell occupancy in the wild on laboratory shell choice by hermit crab Calcinus californiensis. Mar. Fresh. Behav. Physiol., 42(1): 55-62. doi:10.1080/10236240802663564

Andrews, J. – 1971. Seashells of the Texas Coast. University of Texas Press, London.

Argüelles, A. – 2004. Uso diferencial de conchas de gasterópodos por cangrejos ermitaños en respuesta a la acción del oleaje en una costa rocosa. MSc thesis, Univ. Nacional Autónoma de México, México.

Bell, E.C. and J.M. Gosline. – 1997. Strategies for life in flow: tenacity, morphometry, and probability of dislodgement of two Mytilus species. Mar. Ecol. Prog. Ser., 15: 197-208. doi:10.3354/meps159197

Bertness, M.D. – 1981a. Interference, exploitation, and sexual components of competition in a tropical hermit crab assemblage. J. Exp. Mar. Biol. Ecol., 49: 189-202. doi:10.1016/0022-0981(81)90070-8

Bertness, M.D. – 1981b. Predation, physical stress, and the organization of a tropical rocky intertidal hermit crab community. Ecology, 62: 411-425. doi:10.2307/1936715

Bollay, M. – 1964. Distribution and utilization of gastropod shells by the hermit crabs Pagurus samuelis, Pagurus granosimanus, and Pagurus hirsutiusculus at Pacific Grove, California. Veliger, 6: 71-76.

Borjesson, D.L. and W.A. Szelistowski. – 1998. Shell selection and predation in the hermit crab Clibanarius panamensis Stimpson in a tropical mangrove estuary. J. Exp. Mar. Biol. Ecol., 133: 213-228. doi:10.1016/0022-0981(89)90046-4

Carrington, E.B. and M.W. Denny. – 1994. Quantifying “wave exposure”: a simple device for recording maximum velocity and results of its use at several field sites. J. Exp. Mar. Biol. Ecol., 181: 9-29. doi:10.1016/0022-0981(94)90101-5

Childress, J.R. – 1972. Behavioral ecology and fitness theory in a tropical hermit crab. Ecology, 53: 960-964. doi:10.2307/1934316

Connell, J.H. – 1972. Community interactions on marine rocky intertidal shores. Annu. Rev. Ecol. Syst., 3: 169-192. doi:10.1146/annurev.es.03.110172.001125

Conover, M.R. – 1978. The importance of various shell characteristics to the shell- selection behavior of hermit crabs. J. Exp. Mar. Biol. Ecol., 32: 131-142. doi:10.1016/0022-0981(78)90111-9

Côté, I.M., B. Reverdy and P.K. Cooke. – 1998. Less choosy or different preference? Impact of hypoxia on hermit crab shell assessment and selection. Anim. Behav., 56: 867-873. doi:10.1006/anbe.1998.0828 PMid:9790697

Denny, M.W. and S.D. Gaines. – 1990. On the prediction of maximal wave forces. Limnol. Oceanogr., 35: 1-15.

Denny, M.W., T.L. Daniel and M.A.R. Koehl. – 1985. Mechanical limits to size in wave-swept organisms. Ecol. Monogr., 55: 69-102. doi:10.2307/1942526

Floeter, S.R., R.C. Nalesso, M.M.O. Rodrigues and A. Turra. – 2000. Patterns of shell utilization and selection in two sympatric hermit crabs (Anomura: Diogenidae) in south-eastern Brazil. J. Mar. Biol. Ass. U.K., 80: 1053-1059. doi:10.1017/S0025315400003118

Fotheringham, N. – 1976. Population consequences of shell utilization by hermit crabs. Ecology, 57: 570-578. doi:10.2307/1936441

Frankovich, T.A. and J.C. Zieman. – 2005. A temporal investigation of grazer dynamics, nutrients, seagrass leaf productivity, and epiphyte stock. Estuaries, 28: 41-52. doi:10.1007/BF02732752

García, R.B. and F.L.M. Mantelatto. – 2001. Shell selection by the tropical hermit crab Calcinus tibicen (Herbst, 1791) (Anomura, Diogenidae) from Southern Brazil. J. Exp. Mar. Biol. Ecol., 265: 1-14. doi:10.1016/S0022-0981(01)00321-5

García-Cubas, A., M. Reguero and L. Jácome. – 1994. Moluscos arrecifales de Veracruz México. UNAM, México.

García-March J.R., L. Pérez-Rojas and A.M. García-Carrascosa. – 2007. Influence of the hydrodynamic forces on population structure of Pinna nobilis L., 1758 (Mollusca: Bivalvia): The critical combination of drag force, water depth, shell size and orientation. J. Exp. Mar. Biol. Ecol., 342: 202-212. doi:10.1016/j.jembe.2006.09.007

Hahn, D.R. – 1998. Hermit crab shell use patterns: response to previous shell experience and to water flow. J. Exp. Mar. Biol. Ecol., 228: 35-51. doi:10.1016/S0022-0981(98)00002-1

Hazlett, B.A. – 1980. Communication and mutual resource exchange in north Florida hermit crabs. Behav. Ecol. Sociobiol., 6: 177-184. doi:10.1007/BF00569198

Hazlett, B.A. – 1981. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst., 12: 1-22. doi:10.1146/annurev.es.12.110181.000245

Hazlett, B.A. – 1989. Mating success of male hermit crabs in shell generalist and shell specialist species. Behav. Ecol. Sociobiol., 25: 119-128. doi:10.1007/BF00302928

Hernández, M.C. and F. Alvarez. – 2007. Changes in the crustacean community of a tropical rocky intertidal shore: is there a pattern? Hidrobiologica, 17: 25-34.

Lau, W.W.Y. and M.M. Martinez. – 2003. Getting a grip on the intertidal: flow microhabitat and substratum type determine the dislodgement of the crab Pachygrapsus crassipes (Randall) on rocky shores and estuaries. J. Exp. Mar. Biol. Ecol., 295: 1-21. doi:10.1016/S0022-0981(03)00276-4

Lively, C.M. – 1989. The effects of shell mass, surface topography, and depth for withdrawal on shell selection by an intertidal hermit crab. Mar. Behav. Physiol., 14: 161-168. doi:10.1080/10236248909378702

Markham, J.C. – 1968. Notes on growth-patterns and shell-utilization of the hermit crab Pagurus bernhardus (L). Ophelia, 5: 189-205.

Palmer, M.A. – 1988. Epibenthic predators and marine meiofauna: separating predation, disturbance, and hydrodynamic effects. Ecology, 69: 1251-1259. doi:10.2307/1941280

Pérez, R.R. – 1997. Moluscos de la plataforma continental. UAM, México.

Powers, S.P. and J.N. Kittinger. – 2002. Hydrodynamic mediation of predator-prey interactions: differential patterns of prey susceptibility and predatory success explained by variation in water flow. J. Exp. Mar. Biol. Ecol., 273: 171-187. doi:10.1016/S0022-0981(02)00162-4

Prieto, A., S. Sant, E. Méndez and C. Lodeiros. – 2003. Diversity and abundance of mollusks in Thalassia testudinum prairies of the Bay of Mochima, Mochima National Park, Venezuela. Rev. Biol. Trop., 51: 413-426.

Provenzano, A.J. – 1959. The shallow-water hermit crabs of Florida. Bull. Mar. Sci., 9: 349-420.

Raimondi, P.T. and C.M. Lively. – 1986. Positive abundance and negative distribution effects of a gastropod on an intertidal hermit crab. Oecologia, 69: 213-216. doi:10.1007/BF00377624

Reese, E.S. – 1962. Shell selection behavior of hermit crabs. Anim. Behav., 10: 347-360. doi:10.1016/0003-3472(62)90058-1

Reese, E.S. – 1969. Behavioral adaptations of intertidal hermit crabs. Am. Zool., 9: 343-355.

Rittschof, D., J. Sarrica and D. Rubenstein. – 1995. Shell dynamics and microhabitat selection by striped legged hermit crab, Clibanarius vittatus (Bosc). J. Exp. Mar. Biol. Ecol., 192: 157-172. doi:10.1016/0022-0981(95)00059-Z

Scully, E.P. – 1979. The effects of gastropod shell availability and habitat characteristics on shell utilization by the intertidal hermit crab Pagurus longicarpus Say. J. Exp. Mar. Biol. Ecol., 37: 139-152. doi:10.1016/0022-0981(79)90091-1

Servicio Mareográfico Nacional. Instituto de Geofísica, Universidad Nacional Autónoma de México (http://mareografico.unam.mx).

Turra, A. and F.P.P. Leite. – 2001. Shell utilization patterns of a tropical rocky intertidal hermit crab assemblage: I. The case of Grande Beach. J. Crustac. Biol., 21: 393-406. doi:10.1651/0278-0372(2001)021[0393:SUPOAT]2.0.CO;2

Vance, R.R. – 1972a. Competition and mechanism of coexistence in three sympatric species of intertidal hermit crabs. Ecology, 53: 1062-1074. doi:10.2307/1935418

Vance, R.R. – 1972b. The role of shell adequacy in behavioral interactions involving hermit crabs. Ecology, 53: 1075-1083. doi:10.2307/1935419

Vogel, S. 1988. Life’s devices. The physical world of animals and plants. Princeton University Press, Oxford.

Wilson, E.A., E.N. Powell and S.M. Ray. – 1991. The effects of host density and parasite crowding on movement and patch formation of the ectoparasitic snail, Boonea impressa: field and modeling results. J. Anim. Ecol., 60: 779-804. doi:10.2307/5414

Wye, K.R. – 2000. The Encyclopedia of shells. Chartwell Books, Inc., New Jersey.

Downloads

Published

2009-12-30

How to Cite

1.
Argüelles A, Álvarez F, Alcaraz G. Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under different wave action conditions. Sci. mar. [Internet]. 2009Dec.30 [cited 2024Mar.29];73(4):717-23. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1096

Issue

Section

Articles