Uso de conchas por el cangrejo ermitaño Calcinus californiensis en diferentes niveles de la zona intermareal
DOI:
https://doi.org/10.3989/scimar.2011.75n1121Palabras clave:
gasterópodos, cangrejos ermitaños, Calcinus californiensis, oleaje, Olmstead-Tukey, intermarealResumen
El uso de conchas de gasterópodo por el cangrejo ermitaño Calcinus californiensis fue estudiado en Troncones, Guerrero, México. Los cangrejos ermitaños se capturaron en dos niveles diferentes de la zona intermareal, en sitios protegidos y expuestos al oleaje. C. californiensis ocupó conchas de 18 especies de gasterópodo. Cantharus sanguinolentus fue la concha más ocupada considerando ambos sitios. Columbella sp. fue más ocupada por las hembras que por los machos y Nerita scabricosta fue más ocupada por los machos. La frecuencia de uso de las conchas de las diversas especies difirió entre ambos sitios. N. scabricosta y Columbella sp. fueron más ocupadas en la zona protegida al oleaje que en la zona expuesta; C. sanguinolentus y Stramonita biserialis fueron más ocupadas en los sitios expuestos. Los cangrejos ermitaños ocuparon conchas más pesadas y más gruesas en la zona expuesta al oleaje que en la zona protegida. El diagrama Olmstead-Tukey mostró como dominantes las conchas de ocho especies en la zona protegida del oleaje y siete en el sitio expuesto; como raras las conchas de diez especies en la zona protegida y seis en la expuesta. Las conchas agrupadas como raras en ambas zonas fueron relativamente más pesadas que las conchas agrupadas como dominantes. Los resultados sugieren que el peso de las conchas es un factor importante para los ermitaños en las zonas con alta influencia hidrodinámica.
Descargas
Citas
Abbott, R.T. – 1996. A guide to field identification sea shells of North America. Nueva York, USA.
Alcaraz, G. and K. Kruesi. – 2009. The role of previous shell occupancy in the wild on laboratory shell choice by hermit crab Calcinus californiensis. Mar. Fresh. Behav. Physiol., 42(1): 55-62. doi:10.1080/10236240802663564
Angel, J.E. – 2000. Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say). J. Exp. Mar. Biol. Ecol., 243: 169-184. doi:10.1016/S0022-0981(99)00119-7
Argüelles, T.A., F. Álvarez and G. Alcaraz. – 2009. Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under varying conditions of wave action. Sci. Mar., 73(4): 717-723.
Argüelles-Ticó, A., F. Álvarez and G. Alcaraz. – 2010. Shell utilization by the hermit crab Clibanarius antillensis (Crustacea, Anomura) in intertidal rocky pools at Montepio, Veracruz Mexico. Trop. Zool., 23: 63-73.
Asakura, A. – 1995. Sexual differences in life history and resource utilization by the hermit crab. Ecol. Soc. Am., 76(7): 2295-2313.
Avery, R. and R.J. Etter. – 2006. Microstructural differences in the reinforcement of gastropod shell against predation. Mar. Ecol. Prog. Ser., 323: 159-170. doi:10.3354/meps323159
Ayres-Peres, L., C.C. Sokolowicz, C.B. Kotzian, P.J. Rieger and S. Santos. – 2008. Ocupação de conchas de gastrópodes por ermitões (Decapoda, Anomura) no litoral de Rio Grande, Rio Grande do Sul, Brasil. Iheringia, Sér. Zool., 98(2): 218-224.
Bertness, M. D. – 1981a. The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana, 40(2): 197-205. doi:10.1163/156854081X00598
Bertness, M.D. – 1981b. Predation, physical stress, and the organization of a tropical rocky intertidal hermit crab community. Ecology, 62: 411-425. doi:10.2307/1936715
Biagi, R., A.L. Meireles and F.L. Mantelatto. – 2006. Bio-ecological aspects of the hermit crab Paguristes calliopsis (Crustacea, Diogenidae) from Anchieta Island, Brazil. An. Acad. Bras. Ciênc., 78(3): 451-462. PMid:16936935
Blamey, L.K. and G.M. Branch. – 2009. Habitat diversity relative to wave action on rocky shores: implications for the selection of marine protected areas. Aquatic. Conserv. Freshw. Ecosyst., 19: 645-647. doi:10.1002/aqc.1014
Borjesson, D.L. and W.A. Szelistowski. – 1989. Shell selection, utilization and predation in the hermit crab Clibanarius panamensis Stimpson in a tropical mangrove estuary. J. Exp. Mar. Biol. Ecol., 133: 213-228. doi:10.1016/0022-0981(89)90046-4
Botelho, A.Z. and A.C. Costa. – 2000. Shell occupancy of the intertidal hermit crab Clibanarius erythropus (Decapoda, Diogenidae) on São Miguel (Azores). Hydrobiologia, 440: 111-117. doi:10.1023/A:1004190220509
Branch, G.M., F. Odendaal and T.M. Robinson. – 2008. Long-term monitoring of the arrival expansion and effects of the alien mussel Mytilus galloprovincialis relative to wave action. Mar. Ecol. Prog. Ser., 370: 171-183. doi:10.3354/meps07626
Bromley, R.G. and C. Heinberg. – 2006. Attachment strategies of organisms on hard substrates: A paleontological view. Paleogeogr. Palaeocl., 232: 429-453. doi:10.1016/j.palaeo.2005.07.007
Bustamante, R.H., G.M. Branch and S. Eekhout. – 1997. The influences of physical factors on the distribution and zonation patterns of South African rocky-shore communities. S. Afr. J. Mar. Sci., 18:119-136.
Carlson, R.L., M.J. Shulman and J.C. Ellis. – 2006. Factors contributing to spatial heterogeneity in the abundance of the common periwinkle Littorina littorea (L.). J. Mollus. Stud., 72(2): 149-156. doi:10.1093/mollus/eyi059
Caruso, T. and R. Chemello. – 2009. The size and shape of shells used by hermit crabs: A multivariate analysis of Clibanarius erythropus. Acta Oecol., 35: 349-354. doi:10.1016/j.actao.2009.03.002
Donovan, D., J. Baldwin and T. Carefoot. – 1999. The contribution of anaerobic energy to gastropod crawling and re-estimation of minimum cost of transport in the abalone, Haliotis kamtschtkana (Jonas). J. Exp. Mar. Biol. Ecol., 235: 273-284. doi:10.1016/S0022-0981(98)00174-9
Edgell, T.C. and R. Rochette. – 2008. Differential snail predation by an exotic crab and the geography of shell-claw covariance in the northwest Atlantic. Evolution, 62(5): 1216-1228. doi:10.1111/j.1558-5646.2008.00350.x PMid:18298647
Elwood, R.W., N. Marks and J.T.A. Dick. – 1995. Consequences of shell-species preferences for female reproductive success in the hermit crab Pagurus bernhardus. Mar. Biol., 123: 431-434. doi:10.1007/BF00349221
Fotheringham, N. – 1976. Hermit crab shells as a limiting resource (Decapoda, Paguridea). Crustaceana, 31: 193-200. doi:10.1163/156854076X00233
Gherardi, F. – 1991. Relative growth, population structure and shell utilization of the hermit crab Clibanarius erythropus in the Mediterranean. Oebalia, 17: 181-196.
Hahn, D.R. – 1998. Hermit crab shell use patterns: response to previous shell experience and to water flow. J. Exp. Mar. Biol. Ecol., 228: 35-51. doi:10.1016/S0022-0981(98)00002-1
Hazlett, B.A. – 1981. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst., 12: 1-22. doi:10.1146/annurev.es.12.110181.000245
Herreid, C.F. and R.J. Full. – 1986. Locomotion of hermit crabs (Coenobita compressus) on beach and treadmill. J. Exp. Mar. Biol. Ecol., 120: 283-296.
Keen, M.A. – 1971. Sea shells of tropical West America. Stanford, USA.
Kellogg, C.W. – 1976. Gastropod shells: a potentially limiting resource for hermit crabs. J. Exp. Mar. Biol. Ecol., 22(1): 101-111. doi:10.1016/0022-0981(76)90112-X
Kellogg, C.W. – 1977. Coexistence in a hermit crab species ensemble. Biol. Bull., 153: 133-144. doi:10.2307/1540697 PMid:889942
Kelly, S.A., A.B. MacDiarmid and R. C. Babcock. – 1999. Characteristics of spiny lobsters, Jasus edwardsii. Mar. Freshw. Res., 52: 323-331. doi:10.1071/MF00028
Landa-Jaime,V. – 2003. Asociación de moluscos bénticos del sistema lagunar estuarino Agua Dulce/El Ermitaño, Jalisco, México. Cien. Mar., 29(2): 169-184.
Lam, K.K.Y. – 2002. Escape responses of intertidal gastropods on a subtropical rocky shore in Hong Kong. J. Mollus. Stud., 68: 297-306. doi:10.1093/mollus/68.4.297
Lau, W.W.Y. and M.M. Martinez. – 2003. Getting a grip on the intertidal: flow microhabitat and substratum type determine the dislodgement of the crab Pachygrapsus crassipes (Randall) on rocky shores and estuaries. J. Exp. Mar. Biol. Ecol., 295: 1-21. doi:10.1016/S0022-0981(03)00276-4
Litulo, C. – 2005. Population biology and fecundity of the Indo-Pacific hermit crab Clibanarius longitarsus (Anomura: Diogenidae). J. Mar. Biol., 85: 121-125. doi:10.1017/S0025315405010921h
Lowery, W.A. and W.G. Nelson. – 1988. Population ecology of the hermit crab Clibanarius vittatus (Decapoda: Diogenidae) at Sebastian Inlet, Florida. J. Crust. Biol., 4: 548-556. doi:10.2307/1548691
Mantelatto, F.L.M. and L.C.C. Dominciano. – 2002. Pattern of shell utilization by the hermit crab Paguristes tortugae (Diogenidae) from Anchieta Island, southern Brazil. Sci. Mar., 66(33): 265-272.
Martinez, M., R.J. Full, and M.A.R. Koehl. – 1998. Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water. J. Exp. Biol., 201: 2609-2623. PMid:9716513
Martinez, M. 2001. – Running in the surf: hydrodynamics of the shore crab Grapsus tenuicrustatus. J. Exp. Biol., 204: 3097-3112. PMid:11551997
Menge, B.A. – 1978. Predation intensity in a rocky intertidal community: effect of an algal canopy, wave action and desiccation on predator feeding rates. Oecologia, 34: 17-35. doi:10.1007/BF00346238
Miller, L.P. – 2007. Feeding in extreme flows: behavior compensates for mechanical constraints in barnacle cirri. Mar. Ecol. Prog. Ser., 349: 227-234. doi:10.3354/meps07099
Morris, A.P. – 1969. A field guide to Pacific Coast Shells. Houghton Mich., USA.
Olmstead, P.S. and J.W. Tukey. – 1947. A corner test for association. Ann. Math. Stat., 18(4): 495-513. doi:10.1214/aoms/1177730341
Osorno, J.L., L. Fernández-Casillas and C. Rodríguez-Juárez. – 1998. Are hermit crabs looking for light and large shells?: Evidence from natural and field induced shell exchanges. J. Exp. Mar. Biol. Ecol., 222: 163-173. doi:10.1016/S0022-0981(97)00155-X
Poupin, J. and J.M. Bouchard. – 2006. The eastern Pacific species of the genus Calcinus Dana, 1851, with description of a new species from Clipperton Island (Decapoda, Anomura, Diogenidae). Zoosyst., 28(2): 465-486.
Powers, S.P. and J.N. Kittinger. – 2002. Hydrodynamic mediation of predator-prey interactions: differential patterns of prey susceptibility and predatory success explained by variation in water flow. J. Exp. Mar. Biol. Ecol., 273: 171-187. doi:10.1016/S0022-0981(02)00162-4
Reese, E.S. – 1969. Behavioral adaptations of intertidal hermit crabs. Am. Zool., 9: 343-355.
Rilov, G., B. Yehuda, and A. Gasith. – 2004. Life on the edge: do biomechanical and behavioral adaptations to wave-exposure correlate with habitat partitioning in predatory whelks? Mar. Ecol. Prog. Ser., 282: 193-204. doi:10.3354/meps282193
Robles, C.D. M.A. Alvarado, and R.A. Desharnais. – 2001. The shifting balance of littoral predator-prey interaction in regimes of hydrodynamic stress. Oecologia, 128: 142-152. doi:10.1007/s004420100638
Rotjan, R.D., J. Blum, and S.M. Lewis. – 2004. Shell choice in Pagurus longicarpus hermit crabs: dies predation threat influence shell selection behavior? Behav. Ecol. Sociobiol., 56: 171-176. doi:10.1007/s00265-004-0770-0
Sallam, W.S., F.L. Mantelatto, and M.H. Hanafy. – 2008. Shell utilization by the land hermit crab Coenobita scaevola (Anomura, Coenobitidae) from Wadi El-Gemal, Red Sea. Belg. J. Zool., 138(1): 13-19.
Sant’Anna, B.S., C.M. Zangrande, A.L.D. Reigada, and M.A.A. Pinheiro. – 2006. Shell utilization pattern of the hermit crab Clibanarius vittatus (Crustacea, Anomura) in an estuary at São Vicente, State of São Paulo, Brazil. Iheringia, Sér. Zool., 96(2): 261-266.
Scully, E.P. – 1979. The effects of gastropod shell availability and habitat characteristics on shell utilization by the intertidal hermit crab Pagurus longicarpus Say. J. Exp. Mar. Biol. Ecol., 37: 139-152. doi:10.1016/0022-0981(79)90091-1
Skoglund, C. – 2001. Panamic Province Molluscan Literature. Additions and changes from 1971 through 2001. III Gastropoda. The festivus (Suplement).
Terossi, M., D.L.A. Espósito, A.L. Meireles, R. Biagi, and F.L. Mantelatto. – 2006. Pattern of shell occupation by the hermit crab Pagurus exilis (Anomura, Paguridae) on the northern coast of São Paulo State, Brazil. J. Nat. Hist., 40(1-2): 77-87. doi:10.1080/00222930600617989
Trussell, G.C. – 1996. Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution, 50(1): 448-454. doi:10.2307/2410815
Turra, A. and F.P.P. Leite. – 2004. Shell-size selection by intertidal sympatric hermit crabs. Mar. Biol., 145: 251-257. doi:10.1007/s00227-004-1323-9
Turra, A. – 2005. Reproductive behavior of intertidal hermit crabs (Decapoda, Anomura) in Southeastern Brazil. Rev. Bras. Zool., 22: 313-319. doi:10.1590/S0101-81752005000200003
Vance, R.R. – 1972. The role of shell adequacy in behavioral interactions involving hermit crabs. Ecology, 53: 1075-1083. doi:10.2307/1935419
Yoshino, K. and S. Goshima. – 2001. Functional roles of gastropod shells in the hermit crab Pagurus filholi: effects of shell size and species on fitness. Benthos Res., 56: 87-93.
Yoshino, K., M. Ozawa, and S. Goshima. – 2004. Effects of shell size fit on the efficacy of mate guarding behavior in male hermit crabs. J. Mar. Biol., 84: 1203-1208. doi:10.1017/S0025315404010653h
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.