Age and growth of black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern NE Atlantic


  • Ana Rita Vieira Departamento de Biologia Animal and Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa
  • Inês Farias Unidade de Recursos Marinhos e Sustentabilidade, IPIMAR
  • Ivone Figueiredo Unidade de Recursos Marinhos e Sustentabilidade, IPIMAR
  • Ana Neves Departamento de Biologia Animal and Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa
  • Beatriz Morales-Nin CSIC/UIB, Institut Mediterrani d’Estudis Avançats
  • Vera Sequeira Departamento de Biologia Animal and Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa
  • Maria Rogélia Martins Unidade de Recursos Marinhos e Sustentabilidade, IPIMAR
  • Leonel Serrano Gordo Departamento de Biologia Animal and Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa



Aphanopus carbo, black scabbardfish, whole and sectioned otoliths, vertebrae, precision estimators, age and growth


Though whole otoliths are commonly adopted in age assignment of black scabbardfish, this study showed that sectioned otoliths are more appropriate because growth increments are more evident and ageing of larger specimens is easier. Vertebrae are not the most appropriate structure for ageing but, in the absence of otoliths, this structure may be useful in age assignment of this species. To verify possible differences between age and growth among specimens from the southern NE Atlantic, 1075 sectioned otoliths from specimens from mainland Portugal, 436 from Madeira and 107 from the Azores were analysed and the distribution of length-at-age obtained for each sex and region was determined. Significant differences were obtained in the comparison of the distribution of length-at-age between Madeira, the mainland and the Azores. The von Bertalanffy growth model was applied to back-calculated mean length-at-age data from Madeira (Lt = 1586 [1 – e –0.119(t+2.282)] females; Lt = 1461 [1 – e –0.146(t+1.441)] males) and mainland (Lt = 1354 [1 – e –0.170(t+2.040)] females; Lt = 1240 [1 – e –0.208(t+1.654)] males), and significant differences in the growth equations were obtained. Furthermore, a regression tree model was used to investigate how growth is conditioned by reproduction. The results showed a clear separation between individuals from the two areas, both females and males from the mainland (non-reproductive individuals) being characterised by a lower gonadosomatic index and a lower age.


Download data is not yet available.


Abaunza, P., L.S. Gordo, M.T. García Santamaría, S.A. Iversen, A.G. Murta and E. Gallo. – 2008. Life history parameters as basis for the initial recognition of stock management units in horse mackerel (Trachurus trachurus). Fish. Res., 89: 167-180. doi:10.1016/j.fishres.2007.09.021

Anon. – 2000. Final report of the EUstudy project CT97/0084 Environment and biology of deep-water species Aphanopus carbo in NEAtlantic: basis for its management (BASBLACK). DGXIV European commission.

Augustine, O. and T.J. Kenchington. – 1987. A low-cost saw for sectioning otoliths. J. Cons. Int. Explor. Mer, 43: 296-298.

Beamish, R.J. and D.A. Fournier. – 1981. A method for comparing the precision of a set of age determinations. Can. J. Fish. Aquat. Sci., 38: 982-983. doi:10.1139/f81-132

Beckman, D.W. and C.A. Wilson. – 1995. Seasonal timing of opaque zone formation in fish otoliths. In: D.H. Secor, J.M. Dean and S.E. Campana (eds.), Recent Developments in Fish Otoliths Research, pp. 27-43. University of South Carolina Press, Columbia.

Bedford. B.C. – 1983. A method for preparing sections of large numbers of otoliths embedded in black polyester resin. J. Cons. Int. Explor. Mer, 41: 4-12.

Begg, G.A. – 2005. Life history parameters. In: S.X. Cadrin, K.D. Friedland and J.R. Waldman (eds.), Stock identification methods: applications in fisheries science, pp. 119-150. Elsevier Academic Press, MA, USA.

Begg, G.A., J.A. Hare and D.D. Sheehan. – 1999. The role of life history parameters as indicators of stock structure. Fish. Res., 43: 141-163. doi:10.1016/S0165-7836(99)00071-5

Bergstad, O.A. – 1995. Age determination of deep-water fishes: experiences, status and challenges for the future. In: A.G. Hopper (eds.), Deep-water Fisheries of the North Atlantic Oceanic Slope, pp. 267-283. Kluwer Academic Publishers, Dordrecht.

Bernard, D.R. – 1981. Multivariate analysis as a means of comparing growth in fish. Can. J. Fish. Aquat. Sci., 38: 233-236. doi:10.1139/f81-030

Bordalo-Machado, P. and I. Figueiredo. – 2009. The fishery for black scabbardfish (Aphanopus carbo Lowe, 1839) in the Portuguese continental slope. Rev. Fish Biol. Fish., 19: 49-67. doi:10.1007/s11160-008-9089-7

Bowker, A.H. – 1948. A test for symmetry in contingency tables. J. Am. Stat. Assoc., 43: 572-574. doi:10.2307/2280710 PMid:18123073

Campana, S.E. – 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188: 263-297. doi:10.3354/meps188263

Campana, S.E. – 2001. Accuracy, precision and quality control in age determination including a review of the use and abuse of age validation methods. J. Fish. Biol., 59: 197-242. doi:10.1111/j.1095-8649.2001.tb00127.x

Campana, S.E., M.C. Annand and J.I. McMillan. – 1995. Graphical and statistical methods for determining the consistency of age determinations. Trans. Am. Fish. Soc., 124: 131-138. doi:10.1577/1548-8659(1995)124<0131:GASMFD>2.3.CO;2

Carvalho, D. – 1988. Relatório final do estudo efectuado sobre o Peixe-Espada Preto (Aphanopus carbo, Lowe, 1839) capturado na ZEEda Madeira. EC Report. DGXIV/CEDoc. No. XIV/B/1-1987.

Chang, W.Y.B. – 1982. A statistical method for evaluating the reproducibility of age determination. Can. J. Fish. Aquat. Sci., 39: 1208-1210. doi:10.1139/f82-158

Dwyer, K.S., S.J. Walsh and S.E. Campana. – 2003. Age determination, validation and growth of Grand Bank yellowtail flounder (Limanda ferruginea). ICES J. Mar. Sci., 60: 1123-1138. doi:10.1016/S1054-3139(03)00125-5

Erzini, K. – 1994. An empirical study of variability in length-at-age of marine fishes. J. Appl. Ichthyol., 10: 17-41. doi:10.1111/j.1439-0426.1994.tb00140.x

Figueiredo, I., P. Bordalo-Machado, S. Reis, D. Sena-Carvalho, T. Blasdale, A. Newton, and L.S. Gordo. – 2003. Observations on the reproductive cycle of the black scabbardfish (Aphanopus carbo Lowe, 1839) in the NEAtlantic. ICES J. Mar. Sci., 60: 774-779. doi:10.1016/S1054-3139(03)00064-X

Gartner, J.V. Jr, R.E. Crabtree and K.J. Sulak. – 1997. Feeding at depth. In: D.J. Randall and A.P. Farrell (eds.), Deep-sea fishes, pp. 115-193. Academic Press, New York.

Gayanilo, F.C.Jr., P. Sparre and D. Pauly. – 2005. The FAO-ICLARM stock-assessment tools II(FiSATII). Revised version. User’s guide. FAOComputerized Information Series (Fisheries) 8, FAO, Rome, 168 pp.

Gordo, L.S., D.S. Carvalho, I. Figueiredo, S. Reis, P.B. Machado, A. Newton, and J. Gordon. – 2000. Escala de maturação sexual do peixe-espada preto: uma abordagem macro e microscópica. The sexual maturity scale of black scabbardfish: a macro- and microscopic approach. Celta Editora, Oeiras.

Gordon, J.D.M., N.R. Merrett and R.L. Haedrich. – 1995. Environmental and biological aspects of slope dwelling fishes. In: A.G. Hopper (ed.), Deep-water fisheries of the North Atlantic Oceanic slope, pp. 1-30. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Haedrich, R.L. – 1997. Distribution and population ecology. In: D.J. Randall and A.P. Farrell (eds.), Deep-sea fishes, pp. 79-114. Academic Press, New York.

Hilborn, R. and C.J. Walters. – 1992. Quantitative Fisheries Stock Assessment: Choice, Dinamycs, and Uncertain. Chapman & Hall, New York.

Hoenig, J.M., M.J. Morgan and C.A. Brown. – 1995. Analysing differences between two age determination methods by tests of symmetry. Can. J. Fish. Aquat. Sci., 52: 364-368. doi:10.1139/f95-038

Houston, A.I. and J.M. McNamara. – 1999. Models of adaptive behaviour: an approach based on state. Cambridge University Press, Cambridge, U.K.

Kelly, C.J., P.L. Connolly and M.W. Clarke. – 1998. The deep water fisheries of the Rockall trough: some insights gleaned from Irish survey data. ICESCM 1998/O:40, 22 pp.

Large, P.A., C. Hammer, O.A. Bergstad, J.D.M. Gordon and P. Lorance. – 2003. Deep-water fisheries of the Northeast Atlantic: IIAssessment and management approaches. J. Northw. Atl. Fish. Sci., 31: 151-163.

Lika, K. and R.M. Nisbet. – 2000. A dynamic energy budget model based on partitioning of net production. J. Math. Biol., 41: 361-386. doi:10.1007/s002850000049 PMid:11103872

Martins, M.R., A.M. Leite and M.L. Nunes. – 1987. Peixe-espada-preto. Algumas notas acerca da pescaria do peixe-espada-preto. Instituto Nacional de Investigação das Pescas (publicações avulsas), Lisboa.

McCurdy, W.J. – 1985. A low-speed alternative method for cutting otolith sections. J. Cons. Int. Explor. Mer, 42: 186-187.

Merrett, N.R. and R.L. Haedrich. – 1997. Deep-sea demersal fish and fisheries. Chapman and Hall, London.

Morales-Nin, B. and D. Sena-Carvalho. – 1996. Age and growth of black scabbard fish (Aphanopus carbo) off Madeira. Fish. Res., 25: 239-251. doi:10.1016/0165-7836(95)00432-7

Morales-Nin, B. and J. Panfili. – 2005. Seasonality in the deep-sea and tropics revisited: what can otoliths tell us? J. Mar. Freshw. Res., 56: 585-598. doi:10.1071/MF04150

Morales-Nin, B., Â. Canha, M. Casas, I. Figueiredo, L.S. Gordo, M. Gordon, E. Gouveia, C.G. Piñeiro, S. Reis, A. Reis and S.C. Swan. – 2002. Intercalibration of age readings of deepwater black scabbardfish, Aphanopus carbo (Lowe, 1839). ICES J. Mar. Sci., 59: 352-364. doi:10.1006/jmsc.2001.1154

Nakamura, I. and N.V. Parin. – 1993. FAOSpecies Catalogue. Snake mackerels and cutlassfishes of the world (Families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails, and frostfishes known to date. FAO Fisheries Synopsis, 125(15): 1-136.

Neves, A., A.R. Vieira, I. Farias, I. Figueiredo, V. Sequeira and L.S. Gordo. – 2009. Reproductive strategies in black scabbardfish (Aphanopus carbo Lowe, 1839) from NEAtlantic. Sci. Mar., 73S2: 19-31. doi:10.3989/scimar.2009.73s2019

Pajuelo, J.G, J.A. González, J.I. Santana, J.M. Lorenzo, A. García-Mederos and V. Tuset. – 2008. Biological parameters on the bathyal fish black scabbardfish (Aphanopus carbo Lowe, 1839) off the Canary Islands, Central-east Atlantic. Fish. Res., 92: 140-147. doi:10.1016/j.fishres.2007.12.022

Panfili, J. – 1993. Estimation d’âge individuel des poissons: méthodologies et applications á des populations naturelles tropicales et tempérées. Diplôme de Doctorat. Université de Montpellier, France.

Pérez, A. and N. Fabré. – 2003. Seleção das estruturas calcificadas para a determinação da idade da piracatinga Calophysus macropterus Lichtenstein (Siluriformes: Pimelodidae) na Amazónia Central, Brasil. Acta Amazon., 33(3): 499-514.

Quinta, R., L. Gomes and A.T. Santos. – 2004. A mitochondrial DNA PCR-RFLP marker for population studies of the black scabbardfish (Aphanopus carbo). ICES J. Mar. Sci., 61: 864-867. doi:10.1016/j.icesjms.2004.03.003

Roff, D.A. – 1992. The evolution of life histories, theory and analysis. Chapman and Hall, New York.

Stefanni, S. and H. Knutsen. – 2007. Phylogeography and demography history of the deep-sea fish Aphanopus carbo (Lowe, 1839) in the NEAtlantic: Vicariance followed secondary contact of speciation? Mol. Phylogenet. Evol., 42: 38-46. doi:10.1016/j.ympev.2006.05.035 PMid:16876444

Sulak, K.J., C.A. Wenner, G.R. Sedberry and L. van Guelpen. – 1985. The life history and systematics of deep-sea lizard fishes, genus Bathysaurus (Synodontidae). Can. J. Zool., 63: 623-642. doi:10.1139/z85-091

Swan, S.C., J.M.D. Gordon and T. Shimmield. – 2003. Preliminary investigations in the use of otolith microchemistry for stock discrimination of deep-water black scabbardfish (Aphanopus carbo) in the North East Atlantic. J. Northw. Atl. Fish. Sci., 31: 221-231.

Villacorta-Corrêa, M. – 1997. Crescimento do matrinxã, Brycon cephalus (Gunther, 1969) (teleostei: Characidae) no baixo rio negro, seus afluentes e no baixo Solimões. Dissertação de Mestrado. Instituto Nacional de Pesquisas da Amazónia, Fundação Universidade do Amazonas. Manaus, Amazonas.

von Bertalanffy, L. – 1938. A quantitative theory of organic growth (inquiries of growth laws II). Hum. Biol., 10: 181-213.




How to Cite

Vieira AR, Farias I, Figueiredo I, Neves A, Morales-Nin B, Sequeira V, Martins MR, Serrano Gordo L. Age and growth of black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern NE Atlantic. Sci. mar. [Internet]. 2009Dec.31 [cited 2024May21];73(S2):33-46. Available from:




Most read articles by the same author(s)

1 2 3 > >>