Scientia Marina, Forthcoming Articles

A new approach to recruitment overfishing diagnosis based on fish condition from survey data


https://doi.org/10.3989/scimar.04950.03A

Francesc Ordines
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain
orcid http://orcid.org/0000-0002-2456-2214

Josep Lloret
Universitat de Girona, Spain
orcid http://orcid.org/0000-0002-3917-1152

Pilar Tugores
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain
orcid http://orcid.org/0000-0003-2923-3038

Chiara Manfredi
Università di Bologna, Italy
orcid http://orcid.org/0000-0002-2852-4856

Beatriz Guijarro
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain
orcid http://orcid.org/0000-0002-2083-4681

Angélique Jadaud
IFREMER, Laboratoire Halieutique Mediterranée, France
orcid http://orcid.org/0000-0001-6858-3570

Cristina Porcu
Department of Life and Environmental Sciences, University of Cagliari, Italy
orcid http://orcid.org/0000-0003-2649-6502

Luis Gil de Sola
Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Spain
orcid http://orcid.org/0000-0003-1987-9716

Roberto Carlucci
Università degli studi di Bari Aldo Moro, Italy
orcid http://orcid.org/0000-0002-9287-6936

Marina Sartini
Aplysia Soc. Coop. r.l., Italy
orcid http://orcid.org/0000-0003-1545-2109

Igor Isajlović
Institute of Oceanography and Fisheries, Croatia
orcid http://orcid.org/0000-0001-7101-9575

Enric Massutí
Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Spain
orcid http://orcid.org/0000-0002-9524-5873

Abstract


A new approach to recruitment overfishing diagnosis is presented. We hypothesize that condition of recruits should increase when recruitment failures are caused by fishing activity. This would be a consequence of the increase in trophic resource availability, because the population is smaller than that which the ecosystem could support. Temporal series of hake recruit condition were calculated from MEDITS survey data collected in Mediterranean geographical sub-areas (GSAs) 1, 6, 17 and 19 from 1994 to 2015. Multiple linear regressions were used to analyse the relationship between mean annual condition and abundance of recruits and climatic indices in each GSA. Significant correlations were only detected in GSA 6, where 69% of condition variability was explained by the negative correlation with recruit abundance, and with two climatic indices, the Western Mediterranean Oscillation and the standardized air temperature anomaly at surface from the Gulf of Lions. Despite the differences in recruit abundance among GSAs, their mean annual condition oscillated around the same basal value during most of the time series, pointing to density-dependent mortality rates as an important mechanism stabilizing hake recruitment to levels close to the carrying capacity when populations do not suffer recruitment overfishing. This pattern changed when the decreasing recruit abundance trend drove GSA 6 condition values persistently above those of the rest of the GSAs. According to our hypothesis, hake in GSA 6 is in recruitment overfishing.

Keywords


Merluccius merluccius; fishery; recruits; condition index; recruitment overfishing; MEDITS survey

Full Text:


PDF

References


Abella A., Fiorentino F., Mannini A., et al. 2008. Exploring relationships between recruitment of European hake (Merluccius merluccius L. 1758) and environmental factors in the Ligurian Sea and the Strait of Sicily (Central Mediterranean). J. Mar. Syst. 71: 279-293.

Adams P.B. 1980. Life history patterns in marine fishes and their consequences for fisheries management. Fish. Bull. 78: 1-12.

Alpert P., Ben-Gai T., Baharad A., et al. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 29: 311-314.

Barnston A.G., Livezey R.E. 1987. Classifications, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115: 1083-1126.

Bartolino V., Colloca F., Sartor P., et al. 2008. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fish. Res. 92: 277-288.

Behrendt S. 2014. lm.beta: Add Standardized Regression Coefficients to lm-Objects. R package version 1.5-1. https://CRAN.R-project.org/package=lm.beta

Bertrand J., De Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17.

Cowan J.H., Rose K.A., DeVries D.R. 2000. Is density-dependent growth in young-of-the-year fishes a question of critical weight? Rev. Fish Biol. Fish. 10: 61-89.

Domínguez M.R. 2006. Study of reproductive potential of Merluccius merluccius in the Galician shelf. PhD thesis, Univ. Vigo, 288 pp.

Dremière P.Y., Fiorentini L., Cosimi G., et al. 1999. Escapement from the main body of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 207-217.

Dutil J.D., Lambert Y. 2000. Natural mortality from poor condition in Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 57: 826-836.

El Habouz H., Recasens L., Kifani S., et al. 2011. Maturity and batch fecundity of the European hake (Merluccius merluccius, Linnaeus, 1758) in the eastern central Atlantic. Sci. Mar. 75: 447-454.

Fiorentini L., Dremière P.Y., Leonori I., et al. 1999. Efficiency of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 187-205.

General Fisheries Commission for the Mediterranean (GFCM). 2014. Scientific Advisory Committee (SAC). Subcommittee on Stock Assessment (SCSA). Report of the Fifteenth Session. Bar, Montenegro, 3-4 February 2014. 42 pp.

General Fisheries Commission for the Mediterranean (GFCM). 2017. Scientific Advisory Committee (SAC). Working Group on Stock Assessment of Demersal Species (WGSAD). Rome, Italy, 13-18 November 2017. Final report. 70 pp.

Guadayol O., Peters F., Marrasé C., et al. 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Mar. Ecol. Prog. Ser. 381: 139-155.

Hayes J., Shonkwiler J. 2001.Morphometric indicators of body condition: worthwhile or wishful thinking? In: Speakman J. (ed.), Body Composition Analysis of Animals: A Handbook of Non-destructive Methods. Cambridge University Press, Cambridge, pp. 8-38.

Hidalgo B., Massutí E., Moranta J., et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius, L) recruitment process at the Balearic Islands (NW Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384.

Hilborn R. 2002. The dark side of reference points. Bull. Mar. Sci. 70: 403-408.

Hilborn R., Stokes K. 2010. Defining overfished stocks: have we lost the plot? Fisheries 35: 113-120.

Lloret J., Faliex E., Shulman G.E., et al. 2012. Fish health and fisheries, implications for stock assessment and management: the Mediterranean example. Rev. Fish. Sci. 20: 165-180.

Lloret J., Shulman G., Love R.M. 2014. Condition and health indicators of exploited marine fishes. Wiley Blackwell, Chichester, 247 pp.

López-Bustins J.A. 2007. L’Oscil·lació de la Mediterrània Occidental i la Precipitació als Països Catalans. PhD thesis, Univ. Barcelona, 400 pp.

Lorenzen K. 2008. Fish population regulation beyond “stock and recruitment”: the role of density-dependent growth in the recruited stock. Bull. Mar. Sci. 83: 181-196.

MacArthur R., Wilson E.O. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey, 203 pp.

Martín P., Sabatés A., Lloret J., et al. 2012. Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim. Chang. 110: 925-939.

Martín-Vide J., Lopez-Bustins J.A. 2006. The western Mediterranean oscillation and rainfall in the Iberian peninsula. Int. J. Climatol. 26: 1455-1475.

Massutí E., Monserrat S., Oliver P., et al. 2008. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean?: Hypothesis for hake and red shrimp off Balearic Islands. J. Mar. Syst. 71: 421-438.

Mehault S., Domínguez-Petit R., Cerviño S, et al. 2010. Variability in total egg production and implications for management of the southern stock of European hake. Fish. Res. 104: 111-122.

Mellon-Duval C., de Pontual H., Métral L., et al. 2009. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70.

Mellon-Duval C., Harmelin-Vivien M., Métral L., et al. 2017. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81: 7-18.

Monserrat S., López-Jurado J.L., Marcos M. 2008. A mesoscale index to describe the regional ocean circulation around the Balearic Islands. J. Mar. Syst. 71: 413-420.

Morgan M.J. 2004. The relationship between fish condition and the probability of being mature in American plaice (Hippoglossoides platessoides). ICES J. Mar. Sci. 61: 64-70.

Myers R.A., Rosemberg A.A., Mace P.M., et al. 1994. In search of thresholds for recruitment overfishing. ICES J. Mar. Sci. 51: 191-205.

Nakatsuka S., Ishida Y., Fukuda H., et al. 2017. A limit reference point to prevent recruitment overfishing of Pacific bluefin tuna. Mar. Policy 78: 107-113.

Oliver P. 1993. Analysis of fluctuations observed in the trawl fleet landings of the Balearic Islands. Sci. Mar. 57: 219-227.

Palutikof J.P. 2003. Analysis of Mediterranean climate data: Measured and modeled. In: Bolle H.J. (ed), Mediterranean Climate: Variability and Trends. Springer, New York, pp. 125-132.

R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732.

Restrepo V. 1999. Annotated Glossary of Terms in Executive Summary Reports of the International Commission for the Conservation of Atlantic Tunas’ Standing Committee on Research and Statistics (SCRS). ICCAT, Madrid, Spain, 23 pp.

Rose K.A., Cowan J.H, Winemiller K.O., et al. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish. 2: 293-327.

Sainsbury K.J., Polacheck T.W. 1993. The use of biological reference points for defining recruitment overfishing, with an application to southern bluefin tuna. In: Hancock D.A. (ed.), Population dynamics for fisheries management, Australian Society for Fish Biology Workshop Proceedings. Australian Society for Fish Biology, Perth, pp. 265-274.

Sánchez R., Sánchez F., Gil J. 2003. The optimal environmental window that controls hake (Merluccius merluccius) recruitment in the Cantabrian Sea. ICES Mar. Sci. Symp. 219: 415-417.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Standardization procedures for data preparation, stock assessment methods and estimate of MSY reference points for Mediterranean stocks (STECF-15-11). Publications Office of the European Union, Luxembourg, 104 pp.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2017. Mediterranean Stock Assessments - Part 2 (STECF-17-15). Publications Office of the European Union, Luxembourg, 663 pp.

Scientific, Technical and Economic Committee for Fisheries (STECF). 2018. Mediterranean Stock Assessments - Part 1 (STECF-18-12). Publications Office of the European Union, Luxembourg, 623 pp.

Sissenwine M.P., Shepherd G. 1987. An alternative perspective on recruitment overfishing and biological reference points. Can. J. Fish. Aquat. Sci. 44: 913-918.

Skjæraasen J.E., Nash R.D.M., Korsbrekke K., et al. 2012. Frequent skipped spawning in the world’s largest cod population. Proc. Natl. Acad. Sci. U.S.A. 109: 8995-8999.

Walters C., Maguire J.J. 1996. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6: 125-137.

Watanabe Y., Zenitani H., Kimura R. 1995. Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can. J. Fish. Aquat. Sci. 52: 1609-1616.

Winemiller O., Rose K.A. 1992. Patterns of life-history diversification in North American fishes: irnplications for population regulation. Can. J. Fish. Aquat. Sci. 49: 2196-2218.

Wood S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, London, 476 pp.




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es