Scientia Marina, Vol 82, No 2 (2018)

Free-diving underwater fish photography contests: a complementary tool for assessing littoral fish communities

Ana Gordoa
Department of Marine Ecology. Centro de Estudios Avanzados de Blanes, Spanish National Research Council (CSIC), Spain

Jordi Boada
Department of Marine Ecology. Centro de Estudios Avanzados de Blanes, Spanish National Research Council (CSIC), Spain

Antoni García-Rubies
Department of Marine Ecology. Centro de Estudios Avanzados de Blanes, Spanish National Research Council (CSIC), Spain

Oscar Sagué
International Forum for Sustainable Underwater Activities (IFSUA), Spain


Characterizing fish communities must be a priority to safeguard resources and determine critical changes. Here, species richness and the spatial and temporal evolution in the structure of fish assemblages were analysed based on photos taken in underwater free-diving contests. A total of 29 contests held from 2008 to 2015 at four different locations along the northeastern Spanish coast, including a marine protected area were analysed. Contests reward the number of species per participant and photographic quality. Species image frequency from each tournament were standardized to catch image rate. A total of 88 taxa were recorded, including 32 cryptobenthic species, the highest number recorded in the Mediterranean littoral system so far. Cluster analyses yielded four major groups. Catch image rates in the marine protected area were significantly higher for seven species of high commercial interest and for two big labrids of recreational interest, including an endangered species (Labrus viridis). Overall, the study showed that photographic free-diving contest data are a potential tool for determining species richness in littoral systems since contest rules promote competition between participants to obtain maximum fish diversity. We believe that this type of cost-effective data can be applied worldwide as a complementary way of monitoring littoral fish assemblage.


littoral fish assemblages; species richness; diversity; photography contests; Mediterranean Sea

Full Text:



Ackerman J.L., Bellwood D.R. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser. 206: 227-237.

Ashworth J., Ormond R. 2005. Effects of fishing pressure and trophic group on abundance and spillover across boundaries of a no-take zone. Biol. Conserv. 12: 333-344.

Azzurro E., Moschella P., Maynou F. 2011. Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge. PLoS ONE 6: e24885.

Bell J.D. 1983. Effects of depth and marine reserve fishing restrictions on the structure of a rocky reef fish assemblage in the north-western Mediterranean Sea. J. Appl. Ecol. 20: 357-369.

Benedetti-Cecchi L., Pannacciulli F., Bulleri F., et al. 2001. Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar. Ecol. Prog. Ser. 214: 137-150.

Bianchi C.N., Morri C. 2000. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 40: 367-376.

Boada J., Sagué O., Gordoa A. 2017. Spearfishing data reveals the littoral fish communities’ association to coastal configuration. Estuar. Coast. Shelf Sci. 199: 152-160.

Boudouresque C., Cadiou G., Le Diréac’h L. 2005. Marine protected areas: a tool for coastal areas management. Nato Science Series IV: Earth and Environmental Sciences. Springer Netherlands, pp. 29-52.

Brock R.E. 1982. A critique of the visual census method for assessing coral reef fish populations. Bull. Mar. Sci. 32: 269-276.

Bussotti S., Di Franco A., Francour P., et al. 2015. Fish assemblages of Mediterranean marine caves. PloS ONE 10: e0122632.

Cappo M., Speare P., De’ath G. 2004. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302: 123-152.

Claudet J., Fraschetti S. 2010. Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol. Conserv. 143: 2195-2206.

Claudet J., Pelletier D., Jouvenel J.Y., et al. 2006. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130: 349-369.

Coll J., Linde M., García-Rubies A., et al. 2004. Spear fishing in the Balearic Islands (west central Mediterranean): species affected and catch evolution during the period 1975-2001. Fish. Res. 70: 97-111.

Coll J., Garcia-Rubies A., Morey G., et al. 2012. The carrying capacity and the effects of protection level in three marine protected areas in the Balearic Islands (NW Mediterranean). Sci. Mar. 76: 809-826.

Connell S.D., Samoilys M.A., Lincoln Smith M.P., et al. 1998. Comparisons of abundance of coral-reef fish: Catch and effort surveys vs visual census. Aust. J. Ecol. 23: 579-586.

Consoli P., Esposito V., Battaglia P., et al. 2016. Fish Distribution and Habitat Complexity on Banks of the Strait of Sicily (Central Mediterranean Sea) from Remotely-Operated Vehicle (ROV) Explorations. PloS ONE 11: e0167809.

Costanza R., de Groot R., Sutton P., et al. 2014. Changes in the global value of ecosystem services. Global Environ. Chang. 26: 152-158.

Costello M.J., Coll M., Danovaro R., et al. 2010. A census of marine biodiversity knowledge, resources, and future challenges. PloS ONE 5: e12110.

Dufour F., Guidetti P., Francour P. 2007. Comparison of fish inventory in Mediterranean marine protected areas: Influence of surface area and age. Cybium 31: 19-31

Elliott M., Hemingway K., Marshall S., et al. 2002. Data quality analysis and interpretation. In: Elliott M., Hemmingway K.L. (eds), Fishes in Estuaries. Blackwell Science, Oxford, pp. 510–554.

Fairclough D., Brown J., Carlish B., et al. 2014. Breathing life into fisheries stock assessments with citizen science. Sci. Rep. 4: 7249.

Franco A., Pérez-Ruzafa A., Drouineau H., et al. 2012. Assessment of fish assemblages in coastal lagoon habitats: Effect of sampling method. Estuar. Coast. Shelf Sci. 112: 115-125.

Francour P. 1994. Pluriannual analysis of the reserve effect on ichthyofauna in the Scandola natural reserve (Corsica, Northwestern Mediterranean). Oceanol. Acta 17: 309-317.

Francour P. 1999. A critical review of adult and juvenile fish sampling techniques in Posidonia oceanica seagrass beds. Nat. Sicil. 23: 33-57.

Fraschetti S., Guarnieri G., Bevilacqua S., et al. 2011. Conservation of Mediterranean habitats and biodiversity countdowns: what information do we really need? Aquat. Conserv. 21: 299-306.

García-Rubies A., Zabala M. 1990. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Sci. Mar. 54: 317-328.

García-Rubies A., Hereu B., Zabala M. 2013. Long-Term Recovery Patterns and Limited Spillover of Large Predatory Fish in a Mediterranean MPA. PloS ONE 8: e73922.

Glavi?i? I., Paliska D., Soldo A., et al. 2016. A quantitative assessment of the cryptobenthic fish assemblage at deep littoral cliffs in the Mediterranean. Sci. Mar. 80: 329-337.

Gledhill C.T., Lyczkowski-Shultz J., Rademacher K., et al. 1996. Evaluation of video and acoustic index methods for assessing reef-fish populations. ICES J. Mar. Sci. 53: 483-485.

Gordoa A. 2009. Characterization of the infralittoral system along the north-east Spanish coast based on sport shore-based fishing tournament catches. Estuar. Coast. Shelf Sci. 82: 41-49.

Guidetti P., Fanelli G., Fraschetti S., et al. 2002. Coastal fish indicate human-induced changes in the Mediterranean littoral. Mar. Environ. Res. 53: 77-94.

Guilhaumon F., Albouy C., Claudet J., et al. 2015. Representing taxonomic, phylogenetic and functional diversity: new challenges for Mediterranean marine protected areas. Divers. Distrib. 21: 175-187.

Halpern B.S., Warner R.R. 2003. Review paper. Matching marine reserve design to reserve objectives. Proc. R. Soc. B 270: 1871-1878.

Harmelin-Vivien M., Harmelin J., Chauvet C., et al. 1985. The underwater observation of fish communities and fish populations. Methods and problems. Rev. Ecol. Terr. Vie 40: 466-539.

Harmelin-Vivien M., Le Diréach L., Bayle-Sempere J., et al. 2008. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: Evidence of fish spillover? Biol. Conserv. 141: 1829-1839.

Holmlund C.M., Hammer M. 1999. Ecosystem services generated by fish populations. Ecol. Econ. 29: 253-268.

Hutchings J.A., Baum J.K. 2005. Measuring marine fish biodiversity: temporal changes in abundance, life history and demography. Philos. Trans. R. Soc. B 360: 315-338.

Illich I.P., Kotrschal K. 1990. Depth distribution and abundance of Northern Adriatic littoral rocky reef blennioid fishes (Blennidae and Trypterygion). Mar. Ecol. 11: 277-289.

Kotrschal K. 1988. Blennies and endolithic bivalves: differential utilization of shelter in Adriatic Blenniidae (Pisces: Teleostei). Mar. Ecol. 9: 253-269.

Kova?i? M., Patzner R.A., Schliewen U. 2012. A first quantitative assessment of the ecology of cryptobenthic fishes in the Mediterranean Sea. Mar. Biol. 159: 2731-2742.

Kova?i? M., Sanda R. 2016. A new species of Gobius (Perciformes: Gobiidae) from the Mediterranean Sea and the redescription of Gobius bucchichi. J. Fish Biol. 88: 1104-1124.

La Mesa G., Vacchi M. 1999. An analysis of the coastal fish assemblage of the Ustica Island Marine Reserve (Mediterranean Sea). Mar. Ecol. 20: 147-165.

La Mesa G., Micalizzi M., Giaccone G., et al. 2004. Cryptobenthic fishes of the Ciclopi Islands marine reserve (central Mediterranean Sea): assemblage composition, structure and relations with habitat features. Mar. Biol. 145: 233-242.

La Mesa G., Di Muccio S., Vacchi M. 2006. Structure of a Mediterranean cryptobenthic fish community and its relationships with habitat characteristics. Mar. Biol. 149: 149-167.

La Mesa G., Molinari A., Tunesi L. 2010. Coastal fish assemblage characterisation to support the zoning of a new Marine Protected Area in north-western Mediterranean. Ital. J. Zool. 77: 197-210.

Lester S.E., Halpern B.S., Grorud-Colvert K., et al. 2009. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384: 33-46.

Lincoln Smith M.P. 1989. Improving multispecies rocky reef fish censuses by counting different groups of species using different procedures. Environ. Biol. Fish. 26: 29-37.

Lotze H.K., Lenihan H.S., Bourque B.J., et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806-1809.

MacNeil M.A., Tyler E.H., Fonnesbeck C.J., et al. 2008. Accounting for detectability in reef-fish biodiversity estimates. Mar. Ecol. Prog. Ser. 367: 249-260.

Macpherson E. 1994. Substrate utilization in a Mediterranean littoral fish community. Mar. Ecol. Prog. Ser. 114: 211-218.

Mallet D., Pelletier D. 2014. Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952-2012). Fish. Res. 154: 44-62.

Myers R.A., Baum J.K., Shepherd T.D., et al. 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315: 1846-1850.

Ordines F., Massuti E. 2009. Relationships between macro-epibenthic communities and fish on the shelf grounds of the western Mediterranean. Aquat. Conserv. 19: 370-383.

Patzner R.A. 1999. Habitat utilization and depth distribution of small cryptobenthic fishes (Blenniidae, Gobiesocidae, Gobiidae, Tripterygiidae) in Ibiza (western Mediterranean Sea). Environ. Biol. Fish. 55: 207-214.

Petrakis G., Stergiou K. 1995. Weight-length relationships for 33 fish species in Greek waters. Fish. Res. 21: 465-469.

Pickaver A.H. 2010. 10 Integrated coastal zone management progress and sustainability indicators. In: Telford T. (eds), Integrated Coastal Zone Management. Wiley-Blackwell, Oxford, UK. pp 226-250.

Prato G, Thiriet P., Di Franco A., et al. 2017. Enhancing fish Underwater Visual Census to move forward assessment of fish assemblages: An application in three Mediterranean Marine Protected Areas. PLoS ONE 12: e0178511.

R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rousseeuw P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20: 53-65.

Sahyoun R., Bussotti S., Di Franco A., et al. 2013. Protection effects on Mediterranean fish assemblages associated with different rocky habitats. J. Mar. Biol. Assoc. UK 93: 425-435.

Sale P.F., Douglas W.A. 1981. Precision and accuracy of visual census technique for fish assemblages on coral patch reefs. Environ. Biol. Fish. 6: 333-339.

Sano M. 2000. Stability of reef fish assemblages: responses to coral recovery after catastrophic predation by Acanthaster planci. Mar. Ecol. Prog. Ser. 198: 121-130.

Schindler D.E., Carpenter S.R., Cole J.J., et al. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277: 248-251.

Seytre C., Francour P. 2008. Is the Cape Roux marine protected area (Saint-Raphaël, Mediterranean Sea) an efficient tool to sustain artisanal fisheries? First indications from visual censuses and trammel net sampling. Aquat. Living Resour. 21: 297-305.

Sheldon A.L. 1988. Conservation of stream fishes: patterns of diversity, rarity, and risk. Cons. Biol. 2: 149-156.

Smith M.L. 1988. Effects of observer swimming speed on sample counts of temperate rocky reef fish assemblages. Mar. Ecol. Prog. Ser. 43: 223-231.

Smith-Vaniz W.F., Jelks H.L., Rocha L.A. 2006. Relevance of cryptic fishes in biodiversity assessments: a case study at Buck Island Reef National Monument, St. Croix. Bull. Mar. Sci. 79: 17-48.

Stobart B., García-Charton J.A., Espejo C., et al. 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. J. Exp. Mar. Biol. Ecol. 345: 158-174.

Støttrup J.G. 2009. The challenge towards sustainable utilisation of coastal fish resources. In: Moksness E., Dahl E., Støttrup J. (eds), Integrated Coastal Zone Management. John Wiley & Sons, pp. 25-34.

Tessier E., Chabanet P. 2006. Using video techniques for estimating fish post-larvae abundance after mass settlement on artificial reefs. Proc. 10th Intl. Coral Reef Symp., Okinawa, Japan.

Tessier A., Pastor J., Francour P., et al. 2013. Video transects as a complement to underwater visual census to study reserve effect on fish assemblages. Aquat. Biol. 18: 229-241.

Tiralongo F., Tibullo D., Brundo M.V., et al. 2016. Habitat preference of combtooth blennies (Actinopterygii: Perciformes: Blenniidae) in very shallow waters of the Ionian Sea, South-Eastern Sicily, Italy. Acta Ichthyol. Piscat. 46: 65-75.

Thiriet P.D., Di Franco A., Cheminée A., et al. 2016. Abundance and Diversity of Crypto-and Necto-Benthic Coastal Fish Are Higher in Marine Forests than in Structurally Less Complex Macroalgal Assemblages. PloS ONE 11: e0164121.

Vanni M.J. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33: 341-370.

Willis T.J. 2001. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish Biol. 59: 1408-1411.

Willis T.J., Anderson M.J. 2003. Structure of cryptic reef fish assemblages: relationships with habitat characteristics and predator density. Mar. Ecol. Prog. Ser. 257: 209-221.

Willis T.J., Babcock R.C. 2000. A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar. Freshwater Res. 51: 755-763.

Willis T.J., Millar R.B., Babcock R.C. 2000. Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar. Ecol. Prog. Ser. 198: 249-260.

Winer B.J., Broan D.R., Michels K.M. 1991. Statistical Principles in Experimental Design. McGraw-Hill, New York.

Zander C., Heymer A. 1970. Tripterygion tripteronotus (Risso, 1810) and Tripterygion xanthosoma n sp., an ecological speciation (Pisces, Teleostei). Vie Milieu 21: 363-394.

Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support