Scientia Marina, Vol 81, No 1 (2017)

Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea


https://doi.org/10.3989/scimar.04356.01A

Capucine Mellon-Duval
Ifremer, UMR MARBEC, Station Ifremer de Sète, France
orcid http://orcid.org/0000-0002-2811-1779

Mireille Harmelin-Vivien
Université d’Aix Marseille, Mediterranean Institute of Oceanography (MIO), France
orcid http://orcid.org/0000-0003-3085-2899

Luisa Métral
Ifremer, UMR MARBEC, Station Ifremer de Sète, France
orcid http://orcid.org/0000-0002-8187-0053

Véronique Loizeau
Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, France
orcid http://orcid.org/0000-0001-8038-9981

Serge Mortreux
Ifremer, UMR MARBEC, Station Ifremer de Sète, France
orcid http://orcid.org/0000-0002-4416-2592

David Roos
Ifremer La Réunion, France
orcid http://orcid.org/0000-0003-0273-3585

Jean Marc Fromentin
Ifremer, UMR MARBEC, Station Ifremer de Sète, France
orcid http://orcid.org/0000-0002-1496-4332

Abstract


The European hake, Merluccius merluccius, is an important resource for Mediterranean fisheries. This study focuses on juvenile and adult hake feeding ecology in the Gulf of Lions, using information from scientific surveys carried out during two seasons and three years (2004-2006). Stomach content and stable isotope (δ15N, δ13C) analyses were performed, and the main factors explaining variations in δ15N were investigated using GLMs. In the Gulf of Lions, hake mostly fed on crustaceans and fish and a dominant piscivorous regime was reached at 15 cm total length. Pelagic fish (sardine, anchovy and small blue whiting) were the main source of prey (40%-80%) and cannibalism was low (< 5%). The results confirmed that hake is an opportunistic feeder and also showed that the size and diversity of prey vary among hake size classes, probably as a result of the different spatial distribution and/or foraging migrations. The present study finally postulates that the unbalanced sex ratio (80% female against 20% male) observed at the adult stage could be related to the combination of growth pattern differences, diet and exploitation rate on the continental shelf, where the males spend a longer period of time.

Keywords


foodweb; GLM; habitat; Merluccius merluccius; predator-prey relationships; stable isotopes; stomach contents

Full Text:


HTML PDF XML

References


Anonymous. 2013. International bottom trawl survey in the Mediterranean, MEDITS-Handbook, Version n. 7, 2013, MEDITS Working Group, 120 pp.

Arneri A., Morales-Nin B. 2000. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56: 1368-1380. https://doi.org/10.1111/j.1095-8649.2000.tb02149.x

Badalamenti F., D'Anna G., Pinnegar J.K., et al. 2002. Size-related trophodynamic changes in three target fish species recovering from intensive trawling. Mar. Biol. 141: 561-570. https://doi.org/10.1007/s00227-002-0844-3

Bartolino V., Ottavi A., Colloca F., et al. 2008. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J. Mar. Sci. 65: 963-969. https://doi.org/10.1093/icesjms/fsn079

Bozzano A., Recasens L., Sartor P. 1997. Diet of the European hake Merluccius merluccius (Pisces: Merluciidae) in the Western Mediterranean (Gulf of Lions). Sci. Mar. 61: 1-8.

Bozzano A., Sardà F., Ríos J. 2005. Vertical distribution and feeding patterns of the juvenile European hake, Merluccius merluccius in the NW Mediterranean. Fish. Res. 73: 29-36. https://doi.org/10.1016/j.fishres.2005.01.006

Brosset P., Ménard F., Fromentin J.-M., et al. 2015. Influence of environmental variability and age on the body condition of small pelagic fish in the Gulf of Lions. Mar. Ecol. Prog. Ser. 529: 219-231. https://doi.org/10.3354/meps11275

Cabana G., Rasmussen J.B. 1994. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372: 255-257. https://doi.org/10.1038/372255a0

Cabral H.N., Murta A.G. 2002. The diet of blue whiting, hake, horse mackerel and mackerel off Portugal. J. Appl. Ichthyol. 18: 14-23. https://doi.org/10.1046/j.1439-0426.2002.00297.x

Carpentieri P., Colloca F., Cardinale M., et al. 2005. Feeding habits of European hake (Merluccius merluccius) in the central Mediterranean Sea. Fish. Bull. 103: 411-416.

Cartes J.E., Rey J., Lloris D., et al. 2004. Influence of environmental variables on the feeding and diet of European hake (Merluccius merluccius) on the Mediterranean coasts. J. Mar. Biol. Assoc. U.K. 84: 831-835. https://doi.org/10.1017/S0025315404010021h

DeNiro M.J., Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495-506. https://doi.org/10.1016/0016-7037(78)90199-0

Du Buit M.H. 1996. Diet of hake (Merluccius merluccius) in the Celtic Sea. Fish. Res. 28: 381-394. https://doi.org/10.1016/S0165-7836(96)00516-4

Ferraton F., Harmelin-Vivien M., Mellon-Duval C., et al. 2007. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 337: 197-208. https://doi.org/10.3354/meps337197

Froese R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22: 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

Garrison L.P., Link J.S. 2000. Diets of five hake species in the northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser. 204: 243-255. https://doi.org/10.3354/meps204243

Guichet R. 1995. The diet of European hake (Merluccius merluccius) in the northern part of the Bay of Biscay. ICES J. Mar. Sci. 52: 21-31. https://doi.org/10.1016/1054-3139(95)80012-3

Harmelin-Vivien M., Loizeau V., Mellon-Duval C., et al. 2008. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont. Shelf Res. 28: 1911-1919. https://doi.org/10.1016/j.csr.2008.03.002

Hidalgo M., Massuti E., Moranta J., et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius L.) recruitment process at the Balearic Islands (western Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384. https://doi.org/10.1016/j.jmarsys.2007.03.005

Hyslop E.J. 1980. Stomach content analysis-a review of methods and their application. J. Fish Biol. 17: 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x

Jadaud A., Guijarro B., Rouyer T., et al. 2014. Working Group on Stock Assessment on Demersal Species. Assessment of Hake (Merluccius merluccius) in GSA 07 (Gulf of Lions). SAC, GFCM Sub Committee on Stock Assessment, Montenegro, Bar, 28 January-1st February 2014. PMCid:PMC4185698

Jennings S., Pinnegar J.K., Polunin N.V.C., et al. 2002. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226: 77-85. https://doi.org/10.3354/meps226077

Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20: 201-219. https://doi.org/10.2307/1540

Le Loc'h F., Hily C. 2005. Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (Northeast Atlantic). Can. J. Fish. Aquat. Sci. 62: 123-132 https://doi.org/10.1139/f04-242

Lombarte A., Popper A.N. 2004. Quantitative changes in the otolithic organs of the inner ear during the settlement period in European hake Merluccius merluccius. Mar. Ecol. Prog. Ser. 267: 233-240. https://doi.org/10.3354/meps267233

Lorrain A., Savoye N., Chauvaud L., et al. 2003. Decarbonation and preservation method for the analyses of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal. Chim. Acta 491: 125-133. https://doi.org/10.1016/S0003-2670(03)00815-8

Mahe K., Amara R., Bryckaert T., et al. 2007. Ontogenetic and spatial variation in the diet of hake (Merluccius merluccius) in the Bay of Biscay and the Celtic Sea. ICES J. Mar. Sci. 64: 1210-1219. https://doi.org/10.1093/icesjms/fsm100

Mas-Riera J. 1991. Changes during growth in the retinal structure of three hake species, Merluccius spp. (Teleostei: Gadiformes), in relation to their depth distribution. J. Exp. Mar. Biol. Ecol. 152: 91-104. https://doi.org/10.1016/0022-0981(91)90137-L

Mellon-Duval C., de Pontual H., Metral L., et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215

Minagawa M., Wada E. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between ?15N and animal age. Geochim. Cosmochim. Acta 48: 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7

Morales-Nin B., Moranta J. 2004. Recruitment and post-settlement growth of juvenile Merluccius merluccius on the western Mediterranean shelf. Sci. Mar. 63: 399-409. https://doi.org/10.3989/scimar.2004.68n3399

Olive P.J.W., Pinnegar J.K., Polunin N.V.C., et al. 2003. Isotope trophic-step fractionation: a dynamic equilibrium model. J. Anim. Ecol. 72: 608-617. https://doi.org/10.1046/j.1365-2656.2003.00730.x

Overman N.C., Parrish D.L. 2001. Stable isotope composition of walleye: 15N accumulation with age and area-specific differences in ?13C. Can. J. Fish. Aquat. Sci. 58: 1253-1260. https://doi.org/10.1139/f01-072

Palomera I., Olivar M.P., Salat J., et al. 2007. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Prog. Oceanogr. 74: 377-396. https://doi.org/10.1016/j.pocean.2007.04.012

Papaconstantinou C., Caragitsou E. 1987. The food of hake (Merluccius merluccius) in Greek Seas. Vie Milieu 37: 77-83.

Payne A.I.L., Rose B., Leslie R.W. 1987. Feeding of Hake and a 1st attempt at determining their trophic role in the South-African West-Coast Marine-Environment. Afr. J. Mar. Sci. 5: 471-501. https://doi.org/10.2989/025776187784522667

Pillar S.C., Wilkinson I.S. 1995. The diet of Cape hake Merluccius capensis on the South Coast of South-Africa. Afric. J. Mar. Sci. 15: 225-239. https://doi.org/10.2989/02577619509504845

Post D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

Post D.M., Layman C.A., Arrington D.A., et al. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179-189. https://doi.org/10.1007/s00442-006-0630-x PMid:17225157

R Development Core Team. 2009. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0, http://www.R-project.org

Recasens L., Lombarte A., Morales-Nin B., et al. 1998. Spatiotemporal variations in the population structure of the European hake in the NW Mediterranean. J. Fish Biol. 53: 387-401. https://doi.org/10.1111/j.1095-8649.1998.tb00988.x

Scrimgeour C., Robinson D. 2003. Stable isotope analyses and applications. In: Smith K.A., Cresser M.S., Dekker M. (eds), New York, pp 381-431.

Sherwood G.D., Rose A. 2005. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web. Est. Coast. Shelf Sci. 63: 537-549 https://doi.org/10.1016/j.ecss.2004.12.010

SPSS. 2008. SPSS Statistics 17.0, Rel. 17.0.7, 23 August 2008. SPSS Inc., Chicago.

Sorbe J.C. 1999. Deep-sea macrofaunal assemblages within the Benthic Boundary Layer of the Cap Ferret Canyon (Bay of Biscay, NE Atlantic Ocean). Deep-Sea Research, Part II-Topical Stud. Oceanogr. 46: 2309-2329.

Sweeting C.J., Barry J., Barnes C., et al. 2007. Effects of body size and environment on diet-tissue D15N fractionation in fishes. J. Exp. Mar. Biol. Ecol. 340: 1-10. https://doi.org/10.1016/j.jembe.2006.07.023

Tanasichuk R.W., Ware D.M., Shaw W., et al. 1991. Variations in diet, daily ration, and feeding periodicity of pacific Hake (Merluccius productus) and Spiny Dogfish (Squalus acanthias) off the lower West-Coast of Vancouver Island. Can. J. Fish. Aquat. Sci. 48: 2118-2128. https://doi.org/10.1139/f91-251

Trueman C.N., Mc Gill R.A.R., Guyard P.H. 2005. The effect of growth rate on tissue diet isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo salar). Rapid Commun. Mass Spectrom. 19: 3239-3247. https://doi.org/10.1002/rcm.2199 PMid:16220502

Tyler A.V. 1972. Food resource division among northern marine demersal fishes. J. Fish. Res. Board Can. 29: 997-1003. https://doi.org/10.1139/f72-144

Vander Zanden M.J., Cabana G., Rasmussen J.B. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (?15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54: 1142-1158. https://doi.org/10.1139/f97-016

Van Beveren E., Bonhommeau S., Fromentin J-M., et al. 2014. Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean. Mar. Biol. 161: 1809-1822. https://doi.org/10.1007/s00227-014-2463-1

Velasco F., Olaso I. 1998. European hake Merluccius merluccius (L., 1758) feeding in the Cantabrian Sea: seasonal, bathymetric and length variations. Fish. Res. 38: 33-44. https://doi.org/10.1016/S0165-7836(98)00111-8

Venables W.N., Dichmont C.M. 2004. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish. Res. 70: 319-337. https://doi.org/10.1016/j.fishres.2004.08.011




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es