Scientia Marina, Vol 81, No 1 (2017)

Effect of trampling and digging from shellfishing on Zostera noltei (Zosteraceae) intertidal seagrass beds


https://doi.org/10.3989/scimar.04482.17A

Joxe Mikel Garmendia
AZTI, Marine Research Division , Spain
orcid http://orcid.org/0000-0002-9403-1777

Mireia Valle
AZTI, Marine Research Division - Universidad Laica Eloy Alfaro de Manabí, Facultad de Ciencias del Mar , Spain
orcid http://orcid.org/0000-0001-8517-8518

Ángel Borja
AZTI, Marine Research Division , Spain
orcid http://orcid.org/0000-0003-1601-2025

Guillem Chust
AZTI, Marine Research Division , Spain
orcid http://orcid.org/0000-0003-3471-9729

Dae-Jin Lee
BCAM - Basque Centre for Applied Mathematics , Spain
orcid http://orcid.org/0000-0002-8995-8535

J. Germán Rodríguez
AZTI, Marine Research Division , Spain
orcid http://orcid.org/0000-0003-1565-4851

Javier Franco
AZTI, Marine Research Division , Spain
orcid http://orcid.org/0000-0002-8629-3558

Abstract


Seagrass beds are among the most valuable ecosystems in the world but they are also among the ones most affected by human activities, and they have decreased significantly in recent decades. In many areas, such as in the Basque Country (northern Spain), seagrass beds occupy areas that are also of interest for human activities such as recreation and shellfishing. They may therefore face a number of pressures that cause damage or irreversible states. Taking into account the limited distribution of seagrass beds in the Basque Country and the interest in their conservation, an eight-month field experiment focusing on the Zostera noltei growing season was carried out to evaluate the effect of shellfish gathering. We used generalized linear models to assess different intensities of trampling and digging, as the most important pressures of shellfishing applied to Zostera noltei beds. The results indicated that shoot density of Z. noltei was negatively altered by trampling treatments and positively affected (as a recovery) by digging treatments. This finding suggests that shellfishing adversely affects seagrass abundance and is potentially responsible for its low density in the Oka estuary. Our findings are important for management and should be taken into account in seagrass conservation and restoration programmes.

Keywords


Zostera noltei; seagrass; tidal flats; invertebrate harvesting; impact; field experiment

Full Text:


HTML PDF XML

References


Alexandre A., Santos R., Serrão E. 2005. Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 298: 115-122 https://doi.org/10.3354/meps298115

Auby I., Bost C.-A., Budzinski H., et al. 2011. Régression des herbiers de zostères dans le Bassin d'Arcachon: état des lieux et recherche des causes. Rapport Ifremer RST/LER/AR 11.007 Gironde Conseil Général, Arcachon, 195 pp.

Baden S., Gullström M., Lundén B., et al. 2003. Vanishing seagrass (Zostera marina, L.) in Swedish coastal waters. Ambio 32: 374-377 https://doi.org/10.1579/0044-7447-32.5.374
PMid:14571969

Bates D., Maechler M., Bolker B., et al. 2015. Fitting Linear Mixed- Effects Models using lme4. J. Stat. Soft. 67(1): 1-48 https://doi.org/10.18637/jss.v067.i01

Boese B.L. 2002. Effects of recreational clam harvesting on eelgrass (Zostera marina) and associated infaunal invertebrates: in situ manipulative experiments. Aquat. Bot. 73: 63-74 https://doi.org/10.1016/S0304-3770(02)00004-9

Breslow N.E., Clayton D.G. 1993. Approximate inference in Generalized Linear Mixed Models. J. Am. Stat. Assoc. 88: 9-25 https://doi.org/10.1080/01621459.1993.10594284

Brun F.G., Vergara J.J., Navarro G., et al. 2003. Effect of shading by Ulva rigida canopies on growth and carbon balance of the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 265: 85-96 https://doi.org/10.3354/meps265085

Cabaço S., Alexandre A., Santos S. 2005. Population-level effects of clam harvesting on the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 298: 123-129 https://doi.org/10.3354/meps298123

Cabaço S., Santos R., Duarte C.M. 2008. The impact of sediment burial and erosion on seagrasses: A review. Estuar. Coast. Shelf S. 79: 354-366 https://doi.org/10.1016/j.ecss.2008.04.021

Cochón G., Sánchez J.M. 2005. Variations of seagrass beds in Pontevedra (North-Western Spain): 1947-2001. Thalassas 21: 9-19.

Costanza R., de Groot R., Sutton P., et al. 2014. Changes in the global value of ecosystem services. Global Environ. Chang. 26: 152-158 https://doi.org/10.1016/j.gloenvcha.2014.04.002

Cullen-Unsworth L., Unsworth R. 2013. Seagrass meadows, ecosystem services, and sustainability. Environment 55: 14-28 https://doi.org/10.1080/00139157.2013.785864

Cunha A.H., Marbà N., Van Katwijk M., et al. 2012. Changing paradigms in seagrass restoration. Restor. Ecol. 20: 427-430 https://doi.org/10.1111/j.1526-100X.2012.00878.x

de la Torre-Castro M., Rönnbäck O. 2004. Links between humans and seagrasses-an example from tropical East Africa. Ocean Coast. Manage. 47: 361-387 https://doi.org/10.1016/j.ocecoaman.2004.07.005

Dolch T., Reise K. 2010. Long-term displacement of intertidal seagrass and mussel beds by expanding large sandy bedforms in the northern Wadden Sea. J. Sea Res. 63: 93-101 https://doi.org/10.1016/j.seares.2009.10.004

Eckrich C.E., Holmquist J.G. 2000. Trampling in a seagrass assemblage: direct effects, response of associated fauna, and the role of substrate characteristics. Mar. Ecol. Prog. Ser. 201: 199-209 https://doi.org/10.3354/meps201199

García-García F.J., Reyes-Martínez M.J., Ruiz-Delgado M.C., et al. 2015. Does the gathering of shellfish affect the behavior of gastropod scavengers on sandy beaches? A field experiment. J. Exp. Mar. Biol. Ecol. 467: 1-6 https://doi.org/10.1016/j.jembe.2015.02.016

Garmendia J.M., Valle M., Borja Á., et al. 2013. Cartografía de Zostera noltii en la costa vasca: cambios recientes en su distribución (2008-2012). Rev. Invest. Mar. 20: 1-22.

Guimarães M.H.M.E., Cunha A.H., Nzinga R.L., et al. 2012. The distribution of seagrass (Zostera noltii) in the Ria Formosa lagoon system and the implications of clam farming on its conservation. J. Nat. Conserv. 20: 30-40 https://doi.org/10.1016/j.jnc.2011.07.005

Green E.P., Short F.T. 2003. World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, USA, 298 pp.

Hastings K., Hesp P., Kendrick G.A. 1995. Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean Coast. Manage. 26: 225-246 https://doi.org/10.1016/0964-5691(95)00012-Q

Jiang J. 2007. Linear and Generalized Linear Mixed Models and their applications. Springer-Verlag, New York, 257 pp.

McCullagh P., Nelder J. 1989. Generalized Linear Models. Monographs on statistics and applied probability, 37. Chapman and Hall, London, 511 pp PMCid:PMC1385319

Moore K.A., Short F.T. 2006. Zostera: biology, ecology and management. In: Larkum A.W.D., Orth R.J., Duarte C.M. (eds), Seagrasses: Biology, Ecology and Conservation. Springer, Netherlands, pp. 361-386 PMCid:PMC1850945

Nordlund L.M., Gullström M. 2013. Biodiversity loss in seagrass meadows due to local invertebrate fisheries and harbour activities. Estuar. Coast. Shelf Sci. 135: 231-240 https://doi.org/10.1016/j.ecss.2013.10.019

Park S.R., Kim Y.K., Kim J.H., et al. 2011. Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J. Exp. Mar. Biol. Ecol. 407: 275-283 https://doi.org/10.1016/j.jembe.2011.06.023

Pitanga M.E., Montes M.J.F., Magalhaes K.M., et al. 2012. Quantification and classification of the main environmental impacts on a Halodule wrightii seagrass meadow on a tropical island in northeastern Brazil. Ann. Brazilian Acad. Sci. 84: 35-42 https://doi.org/10.1590/S0001-37652012005000010

Short F.T., Wyllie-Echeverria S. 1996. Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23: 17-27 https://doi.org/10.1017/S0376892900038212

Short F.T., Wyllie-Echeverria S. 2000. Global seagrass declines and effects of climate change. In: Sheppard C. (ed.), Seas at the millennium: an environmental evaluation, 10-11. Elsevier Science, Amsterdam.

Short F.T., Koch E.W., Creed J.C., et al. 2006. SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar. Ecol. 27: 277-289 https://doi.org/10.1111/j.1439-0485.2006.00095.x

Short F.T., Polidoro B., Livingstone S.R., et al. 2011. Extinction risk assessment of the world's seagrass species. Biol. Conserv. 144: 1961-1971 https://doi.org/10.1016/j.biocon.2011.04.010

Travaille K.L., Salinas-de-León P., Bell J.J. 2015. Indication of visitor trampling impacts on intertidal seagrass beds in a New Zealand marine reserve. Ocean Coast. Manage. 114: 145-150 https://doi.org/10.1016/j.ocecoaman.2015.06.002

Valle M., Garmendia J.M., Chust G., et al. 2015. Increasing the chance of a successful restoration of Zostera noltii meadows. Aquat. Bot. 127: 12-19 https://doi.org/10.1016/j.aquabot.2015.07.002

van Alstyne K.L., Flanagan J.C., Gifford S.A. 2011. Recreational clam harvesting affects sediment nutrient remineralization and the growth of the green macroalga Ulva lactuca. J. Exp. Mar. Biol. Ecol. 401: 57-62 https://doi.org/10.1016/j.jembe.2011.03.002

Zuur A.F., Ieno E.N., Walker N.J., et al. 2009. Mixed effects models and extensions in ecology with R. Springer Science, New York https://doi.org/10.1007/978-0-387-87458-6




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es