Scientia Marina, Vol 78, No 4 (2014)

Artificial marine habitats favour a single fish species on a long-term scale: the dominance of Boops boops around off-shore fish cages

Rodrigo Riera
Centro de Investigaciones Medioambientales del Atlántico (CIMA SL), Spain

Pablo Sanchez-Jerez
Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Spain

Myriam Rodriguez
Centro de Investigaciones Medioambientales del Atlántico (CIMA SL), Spain

Oscar Monterroso
Centro de Investigaciones Medioambientales del Atlántico (CIMA SL), Spain


Off-shore fish cages are new artificial habitats that can affect pelagic fish assemblages and constitute an important food source for wild fish assemblages. This aggregation has noticeable ecological consequences in cage areas in impoverished ecosystems such as those in the Canary archipelago (NE Atlantic Ocean). However, this new habitat could be dominated by a single species, reducing its positive ecological effects. Wild fish assemblages associated with an off-shore fish lease on the northeastern coast of Tenerife (Canary Islands) were sampled for six years. Fish assemblage structure beneath fish cages and at controls ( > 500 m from cages) differed significantly between locations, with 13 times greater abundance at cage locations. These differences were mainly explained by the dominance of bogue (Boops boops) around fish cages. This trend was consistent in the long-term throughout the study period (2004-2009), affecting local fisheries. The presence of fish cages significantly altered wild fish assemblages in the study area, enhancing mainly biomass and abundance of one species, bogue, and causing shifts in species composition.


off-shore; aquaculture; fisheries; fish; bogue; Canary Islands; Atlantic Ocean

Full Text:



Arechavala-Lopez P., Sanchez-Jerez P., Bayle-Sempere J., et al. 2010. Direct interaction between wild fish aggregations at fish farms and fisheries activity at fishing grounds: a case study with Boops boops. Aquac. Res. 1: 1-15.

Berryman A.A. 2003. On principles, laws and theory in population ecology. Oikos 103: 695-701.

Boyra A., Sanchez-Jerez P., Tuya F., et al. 2004. Attraction of wild coastal fishes to an Atlantic subtropical cage fish farms, Gran Canaria, Canary Islands. Env. Biol. Fish. 70: 393-401.

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143.

Clarke K.R., Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.

Clarke K.R., Warwick R.M. 1994. Changes in Marine Communities. Plymouth Marine Laboratory, 144 pp.

Dayton P.K. 1975. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monog. 45: 137-159.

Dempster T., Sanchez-Jerez P., Bayle-Sempere J.T., et al. 2002. Attraction of wild fish to sea-cage fish farms in the south-western Mediterranean Sea: spatial and short-term temporal variability. Mar. Ecol. Prog. Ser. 242: 237-252.

Dempster T., Fernandez-Jover D., Sanchez-Jerez P., et al. 2005. Vertical variability of wild fish assemblages around sea-cage fish farms: implications for management. Mar. Ecol. Prog. Ser. 304: 15-29.

Dempster T., Uglem K., Sanchez-Jerez P., et al. 2009. Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Mar. Ecol. Prog. Ser. 385: 1-14.

Dempster T., Sanchez-Jerez P., Uglem I., et al. 2010. Species-specific patterns of aggregation of wild fish around fish farms. Est. Coast. Shelf Sci. 86: 271-275.

Estefanell J., Roo J., Guirao R., et al. 2011. Efficient utilization of dietary lipids in Octopus vulgaris (Cuvier 1797) fed fresh and agglutinated moist diets based on aquaculture by-products and low price trash species. Aquac. Res. 35: 1-13.

Falcon J.M., Bortone S.A., Brito A., et al. 1996. Structure and relationships within and between the littoral rock-substrate fish communities off four islands in the Canarian archipelago. Mar. Biol. 125: 215-231.

Fernandez-Jover D., Lopez-Jimenez J.A., Sanchez-Jerez P., et al. 2007. Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus Steindachner, 1868) associated with sea cage fish farms. Mar. Env. Res. 63: 1-18. PMid:17095083

Fernandez-Jover D., Sanchez-Jerez P., Bayle-Sempere J.T., et al. 2008. Seasonal patterns and diets of wild fish assemblages associated to mediterranean coastal fish farms. ICES J. Mar. Sci. 65: 1153-1160.

Fernandez-Jover D., Sanchez-Jerez P., Bayle-Sempere J.T., et al. 2009. Coastal fish farms are settlement sites for juvenile fish. Mar. Env. Res. 68: 89-96. PMid:19447487

Froese R., Pauly D. 2007. Fishbase. Available at (accessed May 2012)

Harmelin-Vivien M.L., Harmelin-Vivien J.G., Chauvet C., et al. 1985. Evaluation visuelle des peuplements et populations de poissons: Méthodes et problèmes. Terre & Vie, 40: 467-539.

Kalogirou S., Mittermayer F., Pihl L., et al. 2012. Feeding ecology of indigenous and non-indigenous fish species within the family Sphyraenidae. J. Fish. Biol. 80(7): 2528-2548. PMid:22650432

Kingsford M., Battershill C. 1998. Studying marine temperate environments: a handbook for ecologists, Canterbury University Press, Christchurch, New Zealand, 335 pp.

Luna-Pérez B., Forcada A., Bayle-Sempere J.T., et al. 2010. Assessing recreational fihing impact at Serra Gelada Marine Park (SW Mediterranean): a baseline study for its future regulation. XVI Simposio Ibérico de Estudio de Biología Marina (Alicante, Spain). 6-10th September 2010.

Machias A., Giannoulaki M., Somarkis S., et al. 2006. Fish farming effects on local fisheries landings in oligotrophic seas. Aquaculture, 261: 809-816.

Ramos A.G., Lorenzo J.M., Pajuelo J.G., 1995, Food habits of bait-caught skipjack tuna Katsuwonus pelamus off the Canary Islands. Sci. Mar. 59: 365-369.

Sanchez-Jerez P., Dempster T., Fernandez-Jover D., et al. 2011. Coastal fish farms act as fish aggregation devices (FADs): potential effects on fisheries. In: Bortrone S (ed) Artificial reefs in fisheries management. CRC Press, Boca Raton, Florida, USA: 187-208.

Skog T.E., Hylland K., Torstensen B.E., et al. 2003. Salmon farming affects the fatty acid composition and taste of wild saithe Pollachius virens L. Aquac. Res. 34: 999-1007.

Soul E. 1986. Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, Massachussets, 584 pp.

Tupper, M., Boutilier, R.G. 1997. Effects of habitat on settlement, growth and predation risj and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 151: 225-236.

Tuya F., Sanchez-Jerez P., Boyra A., et al. 2005. Non-metric multivariate analysis of the demersal icthhyofauna along soft bottoms of the Eastern Atlantic: comparison between unvegetated substrates, seagrass meadows and sandy bottoms under the influence of sea-cage fish farms. Mar. Biol. 147: 1229-1237.

Tuya F., Sanchez-Jerez P., Dempster T., et al. 2006. Changes in demersal wild fish aggregations beneath a sea-cage fish farm after the cessation of farm. J. Fish Biol. 69: 682-697.

Valle C., Bayle-Sempere J.T., Dempster T., et al. 2007. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the southwestern Mediterranean Sea. Est. Coast. Shelf Sci. 72: 299-307.

Wood S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. 3: 3-36.

Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support