Scientia Marina, Vol 78, No 1 (2014)

Ultrastructural study of oogenesis in Marphysa sanguinea (Annelida: Polychaeta: Eunicida) from the Lagoon of Tunis

Monia Elbarhoumi
Laboratoire de Biologie de la Reproduction et du Développement animal, Faculté des Sciences de Tunis , Tunisia

Patrick Scaps
Laboratoire de Biologie Animale, Université des Sciences et Technologies de Lille , France

Chakib Djediat
Muséum National d’Histoire Naturelle, Paris, Service commun de Microscopie électronique des Laboratoires des Sciences de la Vie , France

Fathia Zghal
Laboratoire de Biologie de la Reproduction et du Développement animal, Faculté des Sciences de Tunis , Tunisia


Ultrastructural features of oogenesis of the iteroparous and long lived eunicid polychaete Marphysa sanguinea (Montagu, 1815) from the Lagoon of Tunis were studied using both light and transmission electron microscopy methods. The ovaries consist of coelomic germ-cell clusters surrounded by a thin envelope of follicle cells derived from the peritoneum. They are attached to the genital blood vessels. Oogenesis is asynchronous; therefore, germ cells in premeiotic and previtellogenic phases are observed in one cluster. The oogenesis is of the extraovarian type. In each cluster the more differentiated oocytes detach and float free in the coelomic cavity where they undergo vitellogenesis as solitary cells. Inside the ovary, follicle cells are connected to young oocytes by intercellular bridges and data suggest that in the early stages of vitellogenesis, ribosomes, multivesicular bodies and dense bodies are transferred from the follicle cells to the oocytes through the intercellular bridges. Different morphological evidence supports the heterosynthetic (presence of endocytotic vesicles, abundant microvilli adorning the surface of the egg) and autosynthetic (proteosynthetic organelles well developed, formation of blebs by the external membrane of the nuclear envelope) origin of yolk in M. sanguinea. The cytoplasmic material of the mature oocytes is asymmetrically distributed; large lipid droplets (1.5 μm in size) and large yolk spheres (6 μm in size) occupy the vegetal pole of the oocyte while small yolk spheres (2-3 μm in size) and numerous membranous organelles (mitochondria, cisternae of endoplasmic reticulum) occupy the animal hemisphere. Spherical to elongated cortical granules up to 1.8 μm in size are located in the cortex of the mature oocytes. Finally, fibrogranular aggregates (“nuage”) similar to that within the nucleus are observed in the cortical ooplasm located in the animal pole of mature oocytes. These aggregates probably come from the nucleus and represent maternal cytoplasmic determinants of embryonic cell fate. Oocytes that have completed vitellogenesis measure 250–300 μm in diameter.


Marphysa sanguinea; Annelid; Polychaete; oogenesis; vitellogenesis; ultrastructure

Full Text:



Anderson E., Huebner E. 1968. Development of the oocyte and its accessory cells of the polychaete Diopatra cuprea (Bosc.). J. Morph. 126: 163-197.

Bochert R. 1996. An electron microscopic study of oogenesis in Marenzelleria viridis (Verrill 1873) (Polychaetea; Spionidae) with special reference to large cortical alveoli. Invert. Reprod. Develop. 29: 57-69.

Dhainaut A. 1967. Etude de la vitellogenèse chez Nereis diversicolor O.F. Müller (Annélide Polychète) par autoradiographie à haute résolution. C.R. Hebd. Seances Acad. Sci. Ser. D. 265: 434-436.

Dhainaut A. 1969. Origine et structure des formations mucopolysacharidiques de la zone corticale de l'ovocyte de Nereis diversicolor O.F. Müller (Annélide Polychète). J. Microsc. 8: 69-86.

Dhainaut A. 1970. Etude cytochimique et ultrastructurale de l'évolution ovocytaire de Nereis pelagica L. (Annélide Polychète) I. Ovogenèse naturelle. Z. Zellforsch. Microsc. 104: 345-390.

Dhainaut A. 1976. Contrôle hormonal de la biosynthèse des glycoconjugués chez l'ovocyte de Perinereis cultrifera (Annélide Polychète). Etude autoradiographique. In Actualités sur les hormones des invertébrés. Colloq. Int. C.N.R.S. 251: 83-92.

Dhainaut A. 1984. Oogenesis in Polychaetes. Ultrastructural differentiation and metabolism of nereid oocytes. In: Fischer A., and H.D. Pfannenstiel H.D. (eds), Polychaete Reproduction.Fortschr. Zool. 29: 183-205.

Dondua A.K., Kostyuchenko R.P., Fedorova Z.E. 1997. Effects of some cytoskeleton inhibitors on ooplasmic segregation in the Nereis virens egg., Int. J. Dev. Biol. 41: 853-858. PMid:9449461 Dorresteijn A.W.C. 1990. Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis virens. Roux's Arch. Dev. Biol. 199: 14-30.

Eckelbarger K.J. 1976. Origin and development of the amoebocytes of Nicolea zostericola (Polychaeta: Terebellidae) with a discussion of their possible role in oogenesis. Mar. Biol. 36: 169-182.

Eckelbarger K.J. 1980. An ultrastructural study of oogenesis in Strebtospio benedicti (Spionidae), with remarks on diversity of vitellogenic mechanisms in Polychaeta. Zoomorph. 94: 241-263.

Eckelbarger K.J. 1983. Evolutionary radiation in polychaete ovaries and vitellogenic mechanisms: their possible role in life history patterns. Can. J. Zool. 61: 487-504.

Eckelbarger K.J. 1984. Comparative aspects of oogenesis in polychaetes. In Fischer A., Pfannenstiel H.D. (eds), Polychaete reproduction, Progress in Comparative Reproduction Biology, Fortschr. Zool. 29: 123-148.

Eckelbarger K.J. 1988. Oogenesis and female gametes. In Westheide W., Hermans C.O. (eds), The Ultrastructure of Polychaeta, Microfauna Mar. 281-307.

Eckelbarger K.J. 1992. Oogenesis. In Harrison, F.W., Gardiner S.L. (eds), Microscopic Anatomy of Invertebrates, Vol. 7, Chapter 2 (Polychaeta). Wiley-Liss Inc., New York, 109-127.

Eckelbarger K.J. 2005. Oogenesis and oocytes. In: Bartolomeus T., Purschke G. (eds), Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Hydrobiologia 535/536: 179-198.

Eckelbarger K.J. 2006. Oogenesis. In: Rouse G, Pleijel F (eds) Reproductive biology and phylogeny of Annelida. Science Publishers, Plymouth, pp. 23-43

Eckelbarger K.J., Grassle J.P. 1982. Ultrastructure of the ovary and oogenesis in the polychaete Capitella jonesi (Hartman, 1959). J. Morph. 171: 305-320.

El Gabsi T. 2001. Biologie de la reproduction d'une Annélide Polychète Diopatra neapolitana. Thèse de 3e Cycle. Fac. Sci. Math. Phys. et Nat. de Tunis, 259 pp.

Fallon J.F., Austin C.R. 1967. Fine structure of gametes of Nereis limbata (Annelida) before and after interaction. J. Exp. Zool. 166: 225-242. PMid:4169932

Fauvel P. 1923. Polychètes Errantes, Faune de France, vol. 5, 488 pp.

Fischer, A. 1975. The structure of symplasmic early oocytes and their envelopping sheath cells in the Polychaete Platynereis dumerilli. Cell Tissue Res. 160: 327-343. PMid:1149120

Giangrande A. 1997. Polychaete reproductive patterns, life cycles and life histories: an overview. Ocean. Mar. Biol. Ann. Rev. 35: 323-386.

Goldstein B., Freeman G. 1997. Axis specification in animal development. Bioessays. 19: 105-116. PMid:9046240

Gurraya S.S. 1982. Recent progress in, the structure, origin, composition and function of cortical granules in animal egg. Int. Review Cytol. 78: 237-260.

Huebner E., Anderson E. 1976. Comparative spiralian oogenesis structural aspects: an overview. Amer. Zool. 16: 315-343.

Hutchings P.A., Karageorgopoulos, P. 2003. Designation of a neotype of Marphysa sanguinea (Montagu, 1813) and a description of a new species of Marphysa from eastern Australia. Hydrobiologia, 496: 87-94.

Kessel R.G. 1968. Mechanisms of protein yolk synthesis and deposition in crustacean oocytes. Z. Zellforsch. Microsc. 89: 17-38.

King P.E., Bailey J.H., Babbage P.C. 1969. Vitellogenesis and formation of the egg chain in Spirorbis borealis (Serpulidae). J. mar. biol. Ass. U.K. 49: 141-150.

Kluge B., Lehmann-Greif M., Fischer A. 1995. Long-lasting exocytosis and massive structural reorganization in the egg periphery during cortical reaction in Platynereis dumerilii (Annelida, Polychaeta). Zygote 3: 141-156. PMid:7582916

Lewis C., Karageorgopoulos P. 2008. A new species of Marphysa (Eunicidae) from the Western Cape of South Africa. J. mar. biol. Ass. U.K. 88: 277-287.

Montagu G. 1815. Descriptions of several new or rare animals, principally marine, discovered on the South coast of Devonshire. Trans. Linnean Soc. London 11: 1-26.

Pasteels J.J. 1965. Etude au microscope électronique de la réaction corticale. I. La réaction corticale de fécondation chez Paracentrotus et sa chronologie. II. La réaction corticale de l'oeuf vierge de Sabellaria alveolata. J. Embryol. Exp. Morph. 13: 327-339. PMid:5892035

Pasteels J.J. 1966. La réaction corticale de fécondation de l'oeuf de Nereis diversicolor, étudiée au microscope électronique. Acta Embryol. Morphol. Exp. 9: 155-163. PMid:6015168

Postwald H.E. 1972. The relationship of early oocytes to putative neoblasts in the serpulid Spirorbis borealis. J. Morphol. 137: 215-229.

Prevedelli D., Massamba N'Siala G., Ansaloni I, Simonini R. 2007. Life cycle of Marphysa sanguinea (Polychaeta: Eunicidae) in the Venice Lagoon (Italy). Mar. Ecol. 28: 384-393.

Rouse G.W., Pleijel F. 2001. Polychaetes. Oxford University Press, New York, 354 pp.

Rouse G.W., Tzetlin A.B. 1997. Ultrastructure of the body wall and gametogenesis in Cossura cf. longoccirrata (Cossuridae Polychaeta). Invert. Reprod. Dev. 32: 41-54.

Schroeder P.C., Hermans C.O. 1975. Annelida: Polycheata. In: Giese A.C., Pears J.S. (eds), Reproduction of Marine Invertebrates. Vol. III. Annelids and Echiurans. Academic Press, New York, 213 pp.

Takashima Y., Tominaga A. 1978. Ultracytochemistry on the cortical granules and cortical alveoli of Japanese palolo eggs. Acta Histochem. Cytochem. 11: 171-179.

Wilson W.H. 1991. Sexual reproductive modes in polychaetes: classification and diversity. Bull. Mar. Sci. 48: 500-516.

Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support