Scientia Marina, Vol 74, No 2 (2010)

Antimicrobial potential of marine organisms collected from the southwest coast of India against multiresistant human and shrimp pathogens

Aseer Manilal
Department of Microbiology, Bharathidasan University , India

Sugathan Sujith
Department of Microbiology, Bharathidasan University , India

Joseph Selvin
Department of Microbiology, Bharathidasan University , India

George Seghal Kiran
Department of Biotechnology, Bharathidasan University , India

Chippu Shakir
Department of Microbiology, Bharathidasan University , India

Aaron Premnath Lipton
Central Marine Fisheries Research Institute , India


Diverse marine flora and fauna collected from the southwest coast of India was evaluated for its antimicrobial potential against shrimp Vibrio and multiresistant human pathogens. In total, 47 species of various taxa of marine organisms (29 flora and 18 fauna) were screened for antimicrobial activity. The marine flora includes twenty species of seaweeds, two species of mangroves, four species of cyanobacteria and three species of microalgae. The marine fauna comprises three species of porifera, twelve species of molluscans, one species of sea urchin, one of sea cucumber and one of cnidarian. The organic extractives were tested against five type cultures (Microbial Type Culture Collection) of prominent shrimp Vibrio pathogens, including V. parahaemolyticus, V. vulnificus, V. harveyi, V. alcaligenes and V. alginolyticus, and five multiresistant clinical pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Staphylococcus epidermidis. Among the marine organisms screened, seaweeds showed a broad spectrum of antibacterial activity. The highly active seaweed Falkenbergia, a heteromorphic sporophyte of Asparagopsis taxiformis (Delile) Trevisan, was evaluated further to purify the active compounds using different chromatographic systems, including reverse phase HPLC and GC-MS. The analysis revealed that the most abundant metabolites are oleic acid (51.33%) followed by n-hexadecanoic acid (42.87%).


antibacterial activity; Falkenbergia-phase; sea urchin; cyanobacteria; sea cucumber; microalgae; seaweeds

Full Text:



Abeysinghe, P.D. and R.P. Wanigatunge. – 2006. Evaluation of antibacterial activity of different mangrove plant extracts. Ruhuna J. Sci., 1: 108-116.

Arun Kumar, K., K. Siva Kumar and R. Rengasamy. – 2001. Fatty acids composition of Enteromorpha flexuosa (wulf.) J. Ag. Antibacterial potential. Seaweed Res. Utiln., 23: 41-45.

Bandaranayake, W.M. – 1998. Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2: 133-148. doi:10.1023/A:1009988607044

Bansemir, A., M. Blume, S. Schröder and U. Lindequist. – 2006. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252: 79-84. doi:10.1016/j.aquaculture.2005.11.051

Barbour, E.K., M.A. Sharif, V.K. Sagherian, A.N. Habre, R.S. Talhouk and S.N. Talhouk. – 2004. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J. Ethnopharmacol., 93: 1-7. doi:10.1016/j.jep.2004.02.027 PMid:15182897

Becerro, M.A., X. Turon and M.J. Uriz. – 1995. Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environment. J. Chem. Ecol., 21: 1931-1946. doi:10.1007/BF02033853

Bhakuni, D.S. and S. Jain. – 1990. Bioactive molecules of the marine invertebrates. Part I: Sponges, jelly fish, sea anemones, corals, and bryozoans. J. Sci. Ind. Res., 49: 330-349.

Bergmann, W. and R.J. Feeney. – 1951. Contributions to the study of marine products. XXXII. The nucleosides of Sponges. J. Org. Chem., 16: 981-987. doi:10.1021/jo01146a023

Cragg, G.M., D.J. Newman and R.B. Weiss. – 1997. Coral reefs, forests, and thermal vents: the worldwide exploration of nature for novel antitumor agents. Semin. Oncol., 24: 156-163. PMid:9129686

Dilika, F., P.D. Bremmer and M. Meyer. – 2002. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitotherapia, 71: 450-452. doi:10.1016/S0367-326X(00)00150-7

El-Baroty, G.S., M.Y. Moussa, M.A. Shallan, M.A. Ali, A.Z. Sabh and E.A. Shalaby. – 2007. Contribution to the Aroma, Biological Activities, Minerals, Protein, Pigments and Lipid Contents of the Red Alga: Asparagopsis taxiformis (Delile) Trevisan. J. Appl. Sci. Res., 3: 1825-1834.

Falch, B. – 1996. Was steckt in Cyanobakterien? Pharm. Unserer. Zeit., 25: 311-321. doi:10.1002/pauz.19960250608 PMid:9082458

Faulkner, D.J. – 2000. Marine natural products. Nat. Prod. Rep., 17: 7-55. doi:10.1039/a809395d PMid:10714898

Faulkner, D.J. – 2001. Marine natural products. Nat. Prod. Rep., 18: 1-49. doi:10.1039/b006897g PMid:11245399

Faulkner, D.J. – 2002. Marine natural products. Nat. Prod. Rep., 19: 1-48. doi:10.1039/b009029h PMid:11902436

Harper, M.K., T.S. Bugni, B.R. Copp, R.D. James, B.S. Lindsay, A.D. Richardson, P.C. Schnabel, D. Tasdemir, R.M. Vanwagoner, S.M. Verbitski and C.M. Ireland. – 2001. Introduction to the chemical ecology of marine natural products. In: J.B. McClintock and B.J. Baker (eds.), Marine Chemical Ecology, Marine Biology, pp. 3-69. CRC Press, Boca Raton, Fla. USA.

Harvey, A. – 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today, 5: 294-300. doi:10.1016/S1359-6446(00)01511-7

Haslin, C., M. Lahaye, M. Pellegrini and J.C. Chermann. – 2001. In vitro anti-HIV activity of sulfated cell-wall polysaccharides from gametic, carposporic and tetrasporic stages of the Mediterranean red alga, Asparagopsis armata. Planta Med., 67: 301-305. doi:10.1055/s-2001-14330 PMid:11458443

Haug, T., A.K. Kjuu, O.B. Styrvold, E. Sandsdalen, Ø.M. Olsen and K. Stensvåg. – 2002. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J. Invertebr. Pathol., 81: 94-102. doi:10.1016/S0022-2011(02)00153-2

Haug, T., K. Stensvag, M. Olsen, M. Organ, S. Erling and S.B. Olaf. – 2004. Antibacterial activities in various tissues of the horse mussel, Modiolus modiolus. J. Invertebr. Pathol., 85: 112-119. doi:10.1016/j.jip.2004.02.006 PMid:15050841

Hay, M.E. – 1996. Marine chemical ecology: what’s known and what’s next? J. Exp. Mar. Biol. Ecol., 200: 103-134. doi:10.1016/S0022-0981(96)02659-7

Ireland, C.M., B.R. Copp, M.D. Foster, L.A. McDonald, D.C. Radisky and J.C. Swersey. – 1993. Biomedical potential of marine natural products. In: D.H. Attaway and O.R. Zaborsky (eds.) Marine Biotechnology: Pharmaceutical and Bioactive Natural Products, pp. 1-43. Plenum Press, New York.

Kanias, G.D., H. Skaltsa, E. Tsitsa, A. Looukis and J. Bitis. – 1992. Study of the correlation between trace elements and sterols and fatty acids in brown algae from Saronikos Gulf of Greece. Fresenius. J. Anal. Chem., 344: 334-339. doi:10.1007/BF00321843

Khotimchenko, S.V. and V.E. Vaskovsky. – 1990. Distribution of C20 polyenoic fatty acids in red macrophytic algae. Bot. Mar., 33: 525-528. doi:10.1515/botm.1990.33.6.525

Kleinkauf, H. and H. von Dohren. – 1997. Products of secondary metabolism. In: H.J. Rehm and G. Reed (eds.). Biotechnol. pp. 308-309. VCH, Weinheim.

Malakoff, D. – 1997. Extinction on the high seas. Science, 277: 486-488. doi:10.1126/science.277.5325.486

Martins, R.F., M.F. Ramos, L. Herfindal, J.A. Sous, K. Skarven and V.M. Vasconcelos. – 2008. Antimicrobial and cytotoxic assessment of marine cyanobacteria - Synechocystis and Synechococcus. Mar. Drugs, 6: 1-11. PMid:18648669    PMCid:2474953

Mercado, L., S.H. Schmitt Marshall and G. Arenas. – 2005. Gill tissues of the mussel Mytilus edulis chilensis: A new source for antimicrobial peptides. Electron. J. Biotechnol., 8.

Naviner, M., J.P. Berge, P. Durand and H. Le Bris. – 1999. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture, 174: 15-24. doi:10.1016/S0044-8486(98)00513-4

Nylund, G.M., G. Cervin, M. Hermansson and H. Pavia. – 2005. Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar. Eco. Prog. Ser., 302: 27-36. doi:10.3354/meps302027

Nylund, G.M., G. Cervin, F. Persson, M. Hermansson, P.D. Steinberg and H. Pavia. – 2008. Seaweed defense against bacteria: A poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonization at natural surface concentrations. Mar. Eco. Prog. Ser., 369: 39-50. doi:10.3354/meps07577

Papke, U., E.M. Gross and W. Francke. – 1997. Isolation, Identification and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella musscicola. Tetrahedron Lett., 38: 379-382. doi:10.1016/S0040-4039(96)02284-8

Pawlik, J.R., G. McFall and S. Zea. – 2002. Does the odor from sponges of the genus Ircinia protect them from fish predators? J. Chem. Ecol., 28: 1103-1115. doi:10.1023/A:1016221415028 PMid:12184391

Paul, N.A., R. de Nys and P.D. Steinberg. – 2006. Chemical defense against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar. Eco. Prog. Ser., 306: 87-101. doi:10.3354/meps306087

Premnathan, M., H. Nakashima, K. Kathiresan, N. Rajendran and N. Yamamoto. – 1996. In vitro antihuman immunodeficiency virus activity of mangrove plants. Indian J. Med. Res., 103: 278-281.

Puglisi, M.P., S. Engel, P.R. Jensen and W. Fenical. – 2007. Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar. Biol., 150: 531-540. doi:10.1007/s00227-006-0376-3

Ramasamy, S.M. and A. Murugan. – 2005. Potential antimicrobial activity of marine molluscs from Tuticorin, Southeast coast of India against 40 biofilm bacteria. J. Shellfish Res., 24: 243-251.

Regunathan, C. and S.G. Wesley. – 2004. Control of vibrio spp. in shrimp hatcheries. using the green algae Tetraselmis suecica. Asian Fish. Sci., 17: 147-158.

Ridzwan, B.H., M.A. Kaswandi, Y. Azman and M. Fuad. – 1995. Screening for antimicrobial agents in three species of sea cucumbers from coastal areas of Sabah. Gen. Pharmacol., 26: 1539-1543. doi:10.1016/0306-3623(95)00041-0

Salvador, N., A. Gomez-Garreta, L. Lavelli and L. Ribera. – 2007. Antimicrobial activity of Iberian macroalgae. Sci. Mar., 71: 101-113.

Saravanakumar, D.E.M., P.I. Folb, B.W. Campbell and P. Smith. – 2008. Antimycobacterial activity of the red alga Polysiphonia virgata. Pharm. Biol., 46: 254-260. doi:10.1080/13880200701739413

Selvin, J. and A.P. Lipton. – 2004. Biopotentials of Ulva fasciata and Hypnea musciformis collected from the peninsular coast of India. J. Mar. Sci. Technol., 12: 1-6.

Selvin, J. and A.P. Lipton. – 2004a. Biopotentials of secondary metabolites isolated from marine sponges. Hydrobiologia, 513: 231-238. doi:10.1023/B:hydr.0000018183.92410.21

Stabili, L., M. Lassagues and M. Pastore. – 1996. Preliminary study on the antibacterial capabilities of eggs of Paracentrotus lividus (Echinodermata: Echinoidea). J. Invertebr. Pathol., 67: 180-182. doi:10.1006/jipa.1996.0027

Stone, M.J. and D.H. Williams. – 1992. On the evolution of functional secondary metabolites (natural products). Mol. Microbiol., 6: 29-34. doi:10.1111/j.1365-2958.1992.tb00834.x PMid:1738312

Villasin, J. and M.C. Pomory. – 2000. Antibacterial activity of extracts from the body wall of Parastichopus parvimensis (Echinodermata: Holothuroidea). Fish Shellfish Immunol., 10: 465-46. doi:10.1006/fsim.2000.0265

Williams, G.P., S. Babu, S. Ravikumar, K. Kathiresan, S.A. Prathap, S. Chinnapparaj, M.P. Marian and S.L. Alikhan. – 2007. Antimicrobial activity of tissue and associated bacteria from benthic sea anemone Stichodactyla haddoni against microbial pathogens. J. Environ. Biol., 28: 789-93. PMid:18405113

Winston, J.E. – 1988. The systematist’ perspective. In: D.G. Fautin (ed.). Biomedical Importance of Marine Organisms. pp. 1-6. California Academy of Sciences, San Francisco.

Copyright (c) 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support