Scientia Marina, Vol 72, No 3 (2008)

Osmoregulation as a potential factor for the differential distribution of two cryptic gobiid species, Pomatoschistus microps and P. marmoratus in French Mediterranean lagoons


https://doi.org/10.3989/scimar.2008.72n3469

François Rigal
Laboratoire Ecosystèmes Lagunaires, Université Montpellier II, France

Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II.

Thibaud Chevalier
Laboratoire Ecosystèmes Lagunaires, Université Montpellier II, France

Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II.

Catherine Lorin-Nebel
Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II., France

Guy Charmantier
Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II., France

Jean-Antoine Tomasini
Laboratoire Ecosystèmes Lagunaires, Université Montpellier II, France

Fabien Aujoulat
Equipe Adaptation Ecophysiologique et Ontogenèse, Université Montpellier II., France

Patrick Berrebi
Laboratoire Ecosystèmes Lagunaires, Université Montpellier II, France

Institut des Sciences de l’Evolution, Université Montpellier II.

Abstract


This study was aimed at the detection of potential differences in the osmoregulatory capacity of two cryptic species of gobies, Pomatoschistus microps (Krøyer, 1838) and P. marmoratus (Risso, 1810), that have different distributions in French Mediterranean lagoons characterised by different salinity regimes. Specimens of both species were experimentally exposed to different salinities, their salinity tolerance was evaluated and their blood osmolality was measured. Both species are strong osmoregulators over a wide range of salinities but P. microps showed higher performances of hyper-regulation at very low salinities (10 and 40 mosm/kg, i.e. freshwater 0.3 and 1.4) and of hypo-regulation at high salinities (1500 mosm/kg, 51). Only P. microps was able to tolerate freshwater exposure over 4 days. We conclude that the high osmoregulatory capacity found in P. microps is linked to its better survival at very low salinities and is a physiological requirement for living in areas such as the Mauguio lagoon where salinity is highly variable. In contrast, as osmoregulation of P. marmoratus is less efficient at extreme salinities, this species cannot colonise such environments and is restricted to habitats where salinity is more stable, such as the Thau lagoon.

Keywords


competition; lagoons; osmoregulation; Pomatoschistus; salinity tolerance

Full Text:


PDF

References


Bach, P. – 1985. La pêche dans l’étang de Thau. Application de quelques notions d’écologie théorique aux communautés de poissons et à leur exploitation. Stratégie de quelques populations ichthyologiques capturées. PhD thesis, Univ. Montpellier 2 France.

Berrebi, P., P. Rodriguez, J.-A. Tomasini, G. Cattaneo-Berrebi and A.J. Crivelli. – 2005. Differential distribution of the two cryptic species, Pomatoschistus microps and P. marmoratus, in the lagoons of southern France, with an emphasis on the genetic organisation of P. microps. Estuar. Coast. Shelf Sci., 65: 708-716. doi:10.1016/j.ecss.2005.07.008

Calatayud, R. – 2003. Coexistence et hybridation de deux espèces cryptiques de gobies sédentaires (Pomatoschistus microps et P. marmoratus). Suivi spatio-temporel de l’introgression et adaptations aux lagunes languedociennes. Master thesis, Univ. Montpellier 2 France.

Charmantier, G. – 1998. Ontogeny of osmoregulation in Crustacean: a review. Invertebr. Reprod. Dev., 33: 177-190.

Chow, S. and H. Takeyama. – 1998. Intron length variation observed in the creatine kinase and ribosomal protein genes of the swordfish Xiphias gladius. Fish. Sci., 64: 397-402.

Crivelli, A.J. – 1981. Les peuplements de poissons de la Camargue. Rev. Ecol. (Terre Vie), 35: 617-671.

Doornbos, G. and F. Twisk. – 1987. Density, growth and annual food consumption of gobiid fish in the saline Lake Grevelinngen, The Netherlands. Neth. J. Sea Res., 21: 45-74. doi:10.1016/0077-7579(87)90022-6

Evans, D.H. – 1979. Fish. In: G.M.O. Maloiy, (ed.), Comparative physiology of osmoregulation in animals, pp. 305-390. Academic Press, London.

Franklin, C.E., M.E. Forster and W. Davison. – 1992. Plasma cortisol and osmoregulatory changes in sockeye salmon transferred to sea water: Comparison between successful and unsuccessful adaptation. J. Fish Biol., 41: 113-122. doi:10.1111/j.1095-8649.1992.tb03174.x

Knoppers, B. – 1994. Aquatic primary production in coastal lagoons. In: B. Kjerve, (ed.), Coastal Lagoon Processes, pp. 243-286. Elsevier Science, Amsterdam.

Levin, L.A., D.F. Boesch, A. Covich, C. Dahm, C. Erséus, K.C. Ewel, R.T. Kneib, A. Moldenke, M.A. Palmer, P. Snelgrove, D. Strayer and J.M. Weslawski. – 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems, 4: 430-451. doi:10.1007/s10021-001-0021-4

Miller, P.J. – 1986. Gobiidae. In: P.J.P. Whitehead, M.-L. Bauchot, J.-C. Hureau, J.L. Nielsen and E. Tortonese (eds.), Fishes of the north-eastern Atlantic and the Mediterranean, pp. 1019-1085. Unesco, Paris.

Nebel, C., B. Romestand, G. Nègre-Sadargues, E. Grousset, F. Aujoulat, J. Bacal, F. Bonhomme and G. Charmantier. – 2005. Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system. J. Exp. Biol., 208: 3859-3871. doi:10.1242/jeb.01853 PMid:16215214

Noether, G.E. – 1976. Introduction to statistics. A nonparametric approach. 2d ed. Houghton Mifflin Co, Boston.

Péqueux, A. – 1995. Osmotic regulation on Crustacean. J. Crust. Biol., 15: 1-60. doi:10.2307/1549010

Plaut, I. – 1998. Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol. Biochem., 19: 181-188. doi:10.1023/A:1007798712727

Plus, M., J.M. Deslous-Paoli, I. Auby and F. Dagault. – 2001. Factors influencing primary production of seagrass beds (Zostera noltii Hornem.) in the Thau lagoon (French Mediterranean coast). J. Exp. Mar. Biol. Ecol., 259: 63-84. doi:10.1016/S0022-0981(01)00223-4 PMid:11325377

Poizat, G., E. Rosecchi, P. Chauvelon, P. Contournet, and A.J. Crivelli. – 2004. Long-term fish and macro-crustacean community variation in a Mediterranean lagoon. Estuar. Coast. Shelf Sci., 59: 615-624. doi:10.1016/j.ecss.2003.11.007

Rodriguez, P. – 2002. Génétique des populations de trois espèces de Pomatoschistus (Poissons Gobiidés) des lagunes corses et continentales. Allozymes et RFLP de l’ADN mitochondrial. Master thesis, Univ. Corsica, Corte, France.

Sanzo, L. – 1911. Distrubutione delle papille cutanee (organi ciatiform) e suo valore sistematico nei gobi. Mitt. Zool. Stat. Neapel, 20: 251-328.

SMGO. – 2005. L’étang de l’Or (34) in La surveillance FOGEM des zones humides côtières du Languedoc-Roussillon 2000-2005. Information available online at http://www.languedoc-roussillon.ecologie.gouv.fr/eau/fogem/bilan_2000_2005/Partie-1/40-Etang-Or.pdf

Walsh, P.S., D.A. Metzger and R. Higushi. – 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10: 506-513.

Zainuri, M. – 1993. Structure des peuplements ichtyologiques d’une zone d’herbiers à Zostera marina de l’étang de Thau (France). Etude de la composition alimentaire des juvéniles de loup (Dicentarchus labrax, Linnaeus, 1758), de la daurade (Sparus aurata, Linnaeus, 1758) et du muge (Chelon labrosus, Risso, 1826) par des approches expérimentales. PhD thesis, Univ. Montpellier 2 France.

Zar, J.H. – 1999. Biostatistical analysis. 4th ed. Prentice-Hall Inc, New Jersey.




Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es