Variabilidad subindividual en plumas de mar (Octocorallia: Pennatulacea)

Autores/as

DOI:

https://doi.org/10.3989/scimar.05260.063

Palabras clave:

variabilidad intracolonial, Pennatulacea, Pennatula, Ptilella, coeficiente de variación, varianza, variación intra-planta

Resumen


Las comparaciones entre plantas e invertebrados coloniales modulares sésiles ofrecen interesantes paralelismos entre los planes corporales de las plantas y los animales, tras millones de años de evolución divergente. Entre estos paralelismos podría estar la existencia y distribución de la heterogeneidad intraindividual en los rasgos de los órganos, también denominada variabilidad subindividual. La variabilidad subindividual es importante cuantitativamente y tiene múltiples consecuencias para las plantas individuales, las poblaciones y las comunidades, así como para los animales consumidores. Mas, ¿podría ocurrir un proceso similar de variabilidad subindividual en plumas de mar, que tienen una arquitectura modular similar a la de las plantas? En la literatura de invertebrados marinos se sabe muy poco sobre la presencia y la magnitud de la variabilidad subindividual en los organismos modulares. Este estudio proporciona por primera vez una evaluación cuantitativa de la variabilidad subindividual en las plumas de mar, analizando ciertas características biométricas de estructuras reiteradas que presumiblemente tienen alguna función ecológica, y ofrece una primera comparación de los niveles cuantitativos de variación subindividual entre las plantas y las plumas de mar.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alonso C., Pérez R., Bazaga P., et al. 2018. Within-plant variation in seed size and inflorescence fecundity is associated with epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). Ann. Bot. 121: 153-160. https://doi.org/10.1093/aob/mcx140 PMid:29186299 PMCid:PMC5786237

Baillon S., Hamel J.-F., Mercier A. 2014a. Diversity, distribution and nature of faunal associations with deep-sea pennatulacean corals in the Northwest Atlantic. PLoS ONE 9: e111519. https://doi.org/10.1371/journal.pone.0111519 PMid:25369515 PMCid:PMC4219758

Baillon S., Hamel J.-F., Wareham V.E., Mercier A. 2014b. Seasonality in reproduction of the deep-water pennatulacean coral Anthoptilum grandiflorum. Mar. Biol. 161: 29-43. https://doi.org/10.1007/s00227-013-2311-8

Baillon S., English M., Hamel J.F., Mercier A. 2016. Comparative biometry and isotopy of three dominant pennatulacean corals in the Northwest Atlantic. Acta Zool. 97: 475-493. https://doi.org/10.1111/azo.12141

Bayer F.M. 1956. Octocorallia. In: Moore, R.C. (ed). Treatise on invertebrate paleontology. Part F. Coelenterata. Geol. Soc. America Univ. Kansas Press. New York and Lawrence Kansas, pp. 166-231.

Bayer F.M., Grasshoff M., Verseveldt J. 1983. Illustrated trilingual glossary of morphological and anatomical terms applied to Octocorallia. E. J. Brill/ Dr. Backhuys, Leiden. 75 pp. https://doi.org/10.1163/9789004631915

Birkeland C. 1974. Interactions between a sea pen and seven of its predators. Ecol. Monogr. 44: 211-232. https://doi.org/10.2307/1942312

Borges R.M. 2005. Do plants and animals differ in phenotypic plasticity? J. Biosci. 30: 41-50. https://doi.org/10.1007/BF02705149 PMid:15824440

Brito T.A.S., Tyler P.A., Clarke A. 1997. Reproductive biology of the Antarctic octocoral Thouarella variabilis Wright and Studer 1889. Proc 6th Int Conf Coelenterate Biology, Natural History Museum of Leiden, The Netherlands. 63-69 pp.

Brown M.B., Forsythe A.B. 1974. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69: 364-367. https://doi.org/10.1080/01621459.1974.10482955

Buhl-Mortensen L., Vanreusel A., Gooday A.J., et al. 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31: 21-50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

Clippele L.H., Buhl-Mortensen P., Buhl-Mortensen L. 2015. Fauna associated with cold water gorgonians and sea pens. Cont. Shelf Res. 105: 67-78. https://doi.org/10.1016/j.csr.2015.06.007

Coma R., Ribes M., Zabala M., Gili J.M. 1995. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar. Ecol. Prog. Ser. 117: 173-183. https://doi.org/10.3354/meps117173

Conover W.J., Johnson M.E., Johnson M.M. 1981. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technomet. 23: 351-361. https://doi.org/10.1080/00401706.1981.10487680

Darwin C. 1859. On the origin of species. Murray, London.

Duncan J.C. 1998. Biology of the sea pen Pteroeides sp. in Fiordland, New Zealand. PhD dissertation, Univ. Otago (New Zealand), 88 pp.

Edwards D.C.B., Moore C.G. 2008. Reproduction in the sea pen Pennatula phosphorea (Anthozoa: Pennatulacea) from the west coast of Scotland. Mar. Biol. 155: 303-314. https://doi.org/10.1007/s00227-008-1028-6

Edwards D.C.B., Moore C.G. 2009. Reproduction in the sea pen Funiculina quadrangularis (Anthozoa: Pennatulacea) from the west coast of Scotland. Estuar. Coast. Shelf Sci. 82: 161-168. https://doi.org/10.1016/j.ecss.2009.01.006

Finelli C.M., Helmuth B.S., Pentcheff N.D., Wethey D.S. 2007. Intracolony variability in photosynthesis by corals is affected by water flow: role of oxygen flux. Mar. Ecol. Prog. Ser. Ser. 349: 103-110. https://doi.org/10.3354/meps07101

Foster A.B. 1980. Environmental variation in skeletal morphology within the Caribbean reef corals Montastraea annularis and Siderastrea siderea. Bull. Mar. Sci. 30: 678-709.

Foster A.B. 1985. Variation within coral colonies and its importance for interpreting fossil species. J. Paleontol. 59: 1359-1381.

Fox J., Weisberg S. 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/

García-Cárdenas F.J, López-González P.J. 2022a. Growth and reproductive traits of deep-sea pen Anthoptilum murrayi Kölliker, 1880, from Iceland (North Atlantic). Mar. Biol. Res. 18: 7-8, 448-465. https://doi.org/10.1080/17451000.2022.2147949

García-Cárdenas F.J, López-González P.J. 2022b. Some observations on the reproductive biology of the Mediterranean pennatulacean Pteroeides spinosum (Ellis and Solander, 1786) (Cnidaria: Octocorallia: Pennatulacea). Thalassas https://doi.org/10.1007/s41208-022-00505-6

García-Cárdenas F.J, Drewery J., López-González P.J. 2019. Resurrection of the sea pen genus Ptilella Gray, 1870 and description of Ptilella grayi n. sp. from the NE Atlantic (Octocorallia: Pennatulacea). Sci. Mar. 83: 261-276. https://doi.org/10.3989/scimar.04845.26A

García-Matucheski S., Muniain C. 2011. Predation by the nudibranch Tritonia odhneri (Opisthobranchia: Tritoniidae) on octocorals from the South Atlantic Ocean. Mar. Biodivers. 41: 287-297. https://doi.org/10.1007/s12526-010-0063-y

Goffredo S., Caroselli E., Gasparini G., et al. 2011. Colony and polyp biometry and size structure in the orange coral Astroides calycularis (Scleractinia: Dendrophylliidae). Mar. Biol. Res. 7: 272-280. https://doi.org/10.1080/17451000.2010.492222

Haeckel E.H.P.A. 1869. Ueber Den Organismus Der Schwamme und Ihre Verwandtschaft Mit Den Coralen.

Hallé F. 1999. Éloge de la plante. Pour une nouvelle biologie. Éditions du Seuil, Paris, France. 356 pp.

Harrison P.L., Wallace C.C. 1990. Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed). Ecosystems of the World. Vol. 25. Coral Reefs. Amsterdam: Elsevier. 133-207 pp.

Harvell D. 1984. Why nudibranchs are partial predators: intracolonial variation in bryozoan palatability. Ecology 65: 716-724. https://doi.org/10.2307/1938043

Herrera C.M. 2009. Multiplicity in unity. Plant subindividual variation and interactions with animals, Univ. Chicago Press, Chicago, USA. 437 pp. https://doi.org/10.7208/chicago/9780226327952.001.0001

Herrera C.M. 2017. The ecology of subindividual variability in plants: patterns, processes, and prospects. Web Ecology 17: 51-64. https://doi.org/10.5194/we-17-51-2017

Herrera C.M., Medrano M., Bazaga P. 2015. Continuous within plant variation as a source of intraspecific functional diversity: patterns, magnitude, and genetic correlates of leaf variability in Helleborus foetidus (Ranunculaceae). Am. J. Bot. 102: 225-232. https://doi.org/10.3732/ajb.1400437 PMid:25667075

Herrera C.M., Bazaga P., Pérez R., Alonso C. 2021. Lifetime genealogical divergence within plants leads to epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). New Phytol. 231: 2065-2076. https://doi.org/10.1111/nph.17257 PMid:33634863

Hickson S.J. 1916. The Pennatulacea of the Siboga Expedition, with a general survey of the order. Siboga Expeditie Monographs 14, Livr. 77: 1-265.

Hughes R.N. 2005. Lessons in modularity: the evolutionary ecology of colonial invertebrates. Sci. Mar. 69S1: 169-179. https://doi.org/10.3989/scimar.2005.69s1169

Jackson J.B.C., Coates A.G. 1986. Life cycles and evolution of clonal (modular) animals. Philos. Trans. R. Soc. Lond. B. 313: 7-22. https://doi.org/10.1098/rstb.1986.0022

Jones L.A., Hiscock K., Connor D.W. 2000. Marine habitat reviews, a summary of ecological requirements and sensitivity characteristics for the conservation and management of Marine SACs. UK Marine SACs Project Report. Peterborough: Joint Nature Conservation Committee. 178 pp.

Kaandorp J.A., Kübler J.E. 2001. Environmentally driven plasticity. In: The Algorithmic Beauty of Seaweeds, Sponges and Corals. Springer, Berlin, Heidelberg. 15-66 pp. https://doi.org/10.1007/978-3-662-04339-4_2

Key M.M. 1990. Intracolony variation in skeletal growth rates in Paleozoic ramose trepostome bryozoans. Paleobiology 16: 483-491. https://doi.org/10.1017/S0094837300010204

Kim E., Lasker H.R., Coffroth M.A., Kim K. 2004. Morphological and genetic variation across reef habitats in a broadcast-spawning octocoral. Hydrobiologia 530: 423-432. https://doi.org/10.1007/s10750-004-2646-8

Lapid E.D., Wielgus J., Chadwick-Furman N.E. 2004. Sweeper tentacles of the brain coral Platygyra daedalea: Induced development and effects on competitors. Mar. Ecol. Prog. Ser. 282: 161-71. https://doi.org/10.3354/meps282161

Lasker H.R., Boller M.L., Castanaro J., Sánchez J.A. 2003. Modularity and determinate growth in a gorgonian coral. Biol. Bull. 205: 319-330. https://doi.org/10.2307/1543295 PMid:14672986

Lenth R. 2019. emmeans 1.4: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4. https://CRAN.R-project.org/package=emmeans.

Leuzinger S., Anthony K.R.N., Willis B.L. 2003. Reproductive energy investment in corals: Scaling with module size. Oecologia 136: 524-31. https://doi.org/10.1007/s00442-003-1305-5 PMid:12802676

Levene H. 1960. Robust tests for equality of variances. In: Olkin I. et al. (eds), Contributions to probability and statistics: Essays in honor of Harold Hotelling. Stanford, CA: Stanford University Press. 278-292 pp.

Menezes N.M.D., Neves E.G., Barros F., et al. 2013. Intracolonial variation in Siderastrea de Blainville, 1830 (Anthozoa, Scleractinia): taxonomy under challenging morphological constraints. Biota Neotropica 13: 108-116. https://doi.org/10.1590/S1676-06032013000100012

O'Dea A. 2003. Seasonality and zooid size variation in Panamanian encrusting bryozoans. J. Mar. Biol. Ass. U. K. 83: 1107-1108. https://doi.org/10.1017/S0025315403008348h

O'Dea A., Okamura B. 2000. Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigating palaeoseasonality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162: 319-332. https://doi.org/10.1016/S0031-0182(00)00136-X

Orejas C., López-González P.J., Gili J.M., et al. 2002. Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticum in the Weddell Sea. Mar. Ecol. Prog. Ser. 231: 101-114. https://doi.org/10.3354/meps231101

Osada N., Yasumura Y., Ishida A. 2014. Leaf nitrogen distribution in relation to crown architecture in the tall canopy species, Fagus crenata. Oecologia 175: 1093-1106. https://doi.org/10.1007/s00442-014-2966-y PMid:24844645

Oury N., Gélin P., Magalon H. 2020. Together stronger: Intracolonial genetic variability occurrence in Pocillopora corals suggests potential benefits. Ecol. Evol. 10: 5208-5218. https://doi.org/10.1002/ece3.5807 PMid:32607144 PMCid:PMC7319244

Paradis E., Schliep K. 2018. ape 5.0: an environment for modern phylogenetic and evolutionary analyses in R. Bioinformatics 35: 526-528. https://doi.org/10.1093/bioinformatics/bty633 PMid:30016406

Pearson K. 1901. Mathematical contributions to the theory of evolution: 9, On the principle of homotyposis and its relation to heredity, to the variability of the individual, and to that of the race; part 1, homotyposis in the vegetable kingdom. Philos. Trans. R. Soc. Lond. A. 197: 285-379. https://doi.org/10.1098/rsta.1901.0020

Pérez-Harguindeguy N., Díaz S., Garnier E., et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61: 167-234. https://doi.org/10.1071/BT12225

Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team. 2018. nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-137.

Prada C., Schizas N.V., Yoshioka P.M. 2008. Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol. Biol. 8: 47. https://doi.org/10.1186/1471-2148-8-47 PMid:18271961 PMCid:PMC2275222

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Sakai K. 1998. Effect of colony size, polyp size, and budding mode on egg production in a colonial coral. Biol. Bull. 195: 319-25. https://doi.org/10.2307/1543143 PMid:28297616

Sánchez J.A., Lasker H.R. 2003. Patterns of morphologic integration in branching colonies of marine modular organisms: supramodule organization in gorgonian corals. Proc. R. Soc. Lond. B. 270: 2039-2044. https://doi.org/10.1098/rspb.2003.2471 PMid:14561292 PMCid:PMC1691470

Sánchez J.A., Aguilar C., Dorado D., Manrique N. 2007. Phenotypic plasticity and morphological integration in a marine modular invertebrate. BMC Evol. Biol. 7: 122. https://doi.org/10.1186/1471-2148-7-122 PMid:17650324 PMCid:PMC1959521

Schultz B.B. 1983. On Levene's test and other statistics of variation. Evol. Theory 6:197-203.

Schultz B.B. 1985. Levene's test for relative variation. Syst. Zool. 34: 449-456. https://doi.org/10.1093/sysbio/34.4.449

Schweinsberg M., Tollrian R., Lampert K.P. 2017. Inter‐and intra‐colonial genotypic diversity in hermatypic hydrozoans of the family Milleporidae. Mar. Ecol. 38: e12388. https://doi.org/10.1111/maec.12388

Sherwood O.A., Jamieson R.E., Edinger E.N., Wareham V.E. 2008. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects. Deep-Sea Res. I. 55: 1392-1402. https://doi.org/10.1016/j.dsr.2008.05.013

Sides C.B., Enquist B.J., Ebersole J.J., et al. 2014: Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth? Am. J. Bot. 101: 56-62. https://doi.org/10.3732/ajb.1300284 PMid:24343815

Siefert A., Violle C., Chalmandrier L., Albert C.H., et al. 2015: A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18: 1406-1419. https://doi.org/10.1111/ele.12508 PMid:26415616

Soong K. 2005. Reproduction and colony integration of the sea pen Virgularia juncea. Mar. Biol. 146: 1103-1109. https://doi.org/10.1007/s00227-004-1509-1

Soong K, Lang J.C .1992. Reproductive integration in reef corals. Biol. Bull. 183: 418-431. https://doi.org/10.2307/1542018 PMid:29300508

Tixier-Durivault A. 1965. Quelques octocoralliaires australiens. Bull. Mus. Natl. Hist. Nat. 37: 705-716.

Ulstrup K.E., Ralph P.J., Larkum A.W.D., Kühl M. 2006. Intra-colonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Mar. Biol. 149: 1325-1335. https://doi.org/10.1007/s00227-006-0286-4

Van Valen L. 1978. The statistics of variation. Evol. Theory 4: 33-43.

Wejnert K.E., Smith A.M. 2008. Within‐colony variation in skeletal mineralogy of Adeonellopsis sp. (Cheilostomata: Bryozoa) from New Zealand. N. Z. J. Mar. Freshw. Res. 42: 389-395. https://doi.org/10.1080/00288330809509967

Williams G.C., Hoeksema B.W., van Ofwegen L.P. 2012. A fifth morphological polyp in pennatulacean octocorals, with a review of polyp polymorphism in the genera Pennatula and Pteroeides (Anthozoa: Pennatulidae). Zool. Stud. 51: 1006-1017.

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://doi.org/10.1007/978-3-319-24277-4

Wickham H., Bryan J. 2019. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl

Wickham H., Romain F., Lionel H., Kirill M. 2019. dplyr: A Grammar of Data Manipulation. R package version 0.8.3. https://CRAN.R-project.org/package=dplyr

Publicado

2023-07-04

Cómo citar

1.
García-Cárdenas FJ. Variabilidad subindividual en plumas de mar (Octocorallia: Pennatulacea). Sci. mar. [Internet]. 4 de julio de 2023 [citado 17 de mayo de 2024];87(2):e063. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1955

Número

Sección

Artículos

Datos de los fondos

Ministerio de Economía y Competitividad
Números de la subvención CTM2017-83920-P