El impacto de las inundaciones y las tormentas de arena en el crecimiento y la supervivencia de las plántulas del manglar Avicennia marina en el sur del Mar Rojo

Autores/as

DOI:

https://doi.org/10.3989/scimar.05277.041

Palabras clave:

Jizan, entierro, temperatura, factor estresante, deshidratación, conservación

Resumen


Los manglares proliferan en regiones tropicales y subtropicales, incluidos los desiertos. Sin embargo, se sabe poco acerca de cómo las condiciones ambientales de los desiertos influyen en la ecología de las plántulas de manglares. Las plántulas del manglar Avicennia marina se examinaron in situ en un manglar natural de la costa sur del Mar Rojo de Arabia Saudita para (1) estimar y comparar la tasa de crecimiento de A. marina entre microhábitats seleccionados con diferente exposición a las mareas, y (2) examinar la influencia de las tormentas de arena en el crecimiento y supervivencia de las plántulas. Los muestreos se realizaron en cuatro zonas establecidas en función de su exposición a las mareas: exposición a las mareas bajas (Z1), exposición a las mareas medias (Z2), exposición a las mareas altas con numerosas madrigueras de cangrejos (Z3) y exposición a las mareas altas pero con pocas o ninguna madriguera (Z4). Se cuantificó el crecimiento vertical y la mortalidad de las plántulas, así como las variables ambientales seleccionadas. Los resultados muestran que las tasas de crecimiento de las plántulas difirieron significativamente entre las zonas de muestreo con el mayor crecimiento encontrado en las regiones de marea alta (Z3 seguida de Z4) y el crecimiento más bajo en Z1. La tasa de crecimiento siguió un patrón decreciente significativo a lo largo del tiempo, que coincidió con el aumento de la temperatura del aire y la disminución de la humedad relativa. Las tormentas de arena aumentaron en julio, causando una deposición masiva de polvo que enterró a las plántulas, desencadenando una gran mortalidad. Nuestro estudio destaca que el crecimiento y la supervivencia de las plántulas pueden verse afectados por la extensión de la inundación de las mareas y las tormentas de arena, actuando como factores de estrés natural.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Almahasheer H., Aljowair A., Duarte C.M., Irigoien X. 2016a. Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf. Sci. 169: 164-172. https://doi.org/10.1016/j.ecss.2015.11.027

Almahasheer H., Duarte C.M., Irigoien X. 2016b. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci. 3: 271. https://doi.org/10.3389/fmars.2016.00271

Arishi A.A. 2021. Classification of Sandstorms in Saudi Arabia. Atmos. Clim. Sci. 11: 177-193. https://doi.org/10.4236/acs.2021.111012

Anton A., Almahasheer H., Delgado A., et al. 2020. Stunted Mangrove Trees in the Oligotrophic Central Red Sea Relate to Nitrogen Limitation. Front. Mar. Sci. 7: 597. https://doi.org/10.3389/fmars.2020.00597

Balke T., Bouma T.J., Horstman E.M., et al. 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440: 1-9. https://doi.org/10.3354/meps09364

Ball M.C. 1988a. Ecophysiology of mangroves. Trees 2: 129-142. https://doi.org/10.1007/BF00196018

Ball M.C. 1988b. Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Aust. J. Plant Physiol. 15: 447-464. https://doi.org/10.1071/PP9880447

Bernstein L., Hayward H.E. 1958. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 9: 25-46. https://doi.org/10.1146/annurev.pp.09.060158.000325

Burchett M.D., Field C.D., Pulkownik A. 1984. Salinity, growth and root respiration in the grey mangrove, Avicennia marina. Physiol. Plant. 60: 113-118. https://doi.org/10.1111/j.1399-3054.1984.tb04549.x

Chapman V.J. 1976. Mangrove Vegetation. J. Cramer, Vaduz, Germany.

Clarke L., Hannon N. 1970. The Mangrove Swamp and Salt Marsh Communities of the Sydney District: III. Plant Growth in Relation to Salinity and Waterlogging. J. Ecol. 58: 351-369. https://doi.org/10.2307/2258276

Clough B. E. 1992. Primary productivity and the growth of mangrove forests. In: Robertson A.I., Alongi D.M. (eds), Tropical Mangrove Ecosystems, pp. 225-250. American Geophysical Society, Washington DC, USA. https://doi.org/10.1029/CE041p0225

Cusack M., Arrieta J.M., Duarte C.M. 2020. Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. Earth Syst. Environ. 4: 777-788. https://doi.org/10.1007/s41748-020-00189-z

Ellison J.C. 1999. Impacts of sediment burial on mangroves. Mar. Pollut. Bull. 37: 420-426. https://doi.org/10.1016/S0025-326X(98)00122-2

Garcias-Bonet N., Delgado-Huertas A., Carillo-de-Albornoz P., et al. 2019. Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. Front. Mar. Sci. 6: 267. https://doi.org/10.3389/fmars.2019.00267

Giomi F., Barausse A., Duarte C. M., et al. 2019. Oxygen supersaturation protects coastal marine fauna from ocean warming. Sci. Adv. 5: eaax1814. https://doi.org/10.1126/sciadv.aax1814 PMid:31517051 PMCid:PMC6726443

Gribsholt B.G., Kostka J.E., Kristensen E. 2003. Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. 259: 237-251. https://doi.org/10.3354/meps259237

Hamilton S. E., Casey D. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25: 729-738. https://doi.org/10.1111/geb.12449

Hastenrath S., Lamb P.J. 1979. Climatic Atlas of the Indian Ocean, part 2. The ocean heat budget. University of Wisconsin Press, Madison.

Krauss K.W., Lovelock C.E., McKee K.L., et al. 2006. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 89: 105-127. https://doi.org/10.1016/j.aquabot.2007.12.014

Kristensen E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59: 30-43. https://doi.org/10.1016/j.seares.2007.05.004

Lee S.Y. 1998. Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar. Freshw. Res. 49: 335-343. https://doi.org/10.1071/MF97179

Lee S.Y. 1999. Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function. Austral Ecol. 24: 355-366. https://doi.org/10.1046/j.1442-9993.1999.00984.x

Macreadie P. I., Anton A., Raven J. A., et al. 2019. The future of Blue Carbon science. Nat. Commun. 10: 3998. https://doi.org/10.1038/s41467-019-11693-w PMid:31488846 PMCid:PMC6728345

Mumby P.J., Edwards A.J., Arias-González J.E., et al. 2004. Mangrove enhance the biomass of coral reef fish communities in the Caribbean. Nature 427: 533-536. https://doi.org/10.1038/nature02286 PMid:14765193

Okello J.A., Kairo J.G., Dahdouh-Guebas F., et al. 2020. Mangrove trees survive partial sediment burial by developing new roots and adapting their roots, branch and stem anatomy. Trees 34: 37-49. https://doi.org/10.1007/s00468-019-01895-6

Price A.R.G., Medley P.A.H., McDowall R.J., et al. 2007. Aspects of mangal ecology along the Red Sea coast of Saudi Arabia. J. Nat. Hist. 21: 449-464. https://doi.org/10.1080/00222938700771121

Rasul N.M.A., Stewart I.C.F., Nawab Z.A. 2015.Introduction to the Red Sea: Its Origin, Structure and Environment. In: Rasul N.M.A., Stewart I.C.F. (eds), The Red Sea. Springer Earth Syst. Sci. https://doi.org/10.1007/978-3-662-45201-1

Ridd P.V. 1996. Flow through animal burrows in mangrove creeks. Estuar. Coast. Shelf Sci. 43: 617-625. https://doi.org/10.1006/ecss.1996.0091

Saderne V., Baldry K., Anton A., et al. 2019. Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. J. Geophys. Res. Oceans 124: 7513- 7528. https://doi.org/10.1029/2019JC015266

Smith T.J. 1987. Effects of light and intertidal position on seedling survival and growth in tropical tidal forests. J. Exp. Mar. Biol. Ecol. 110: 133-146. https://doi.org/10.1016/0022-0981(87)90024-4

Smith T.J., Boto K.G., Frusher S.D., Giddins R.L. 1991. Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar. Coast. Shelf Sci. 33: 419-432. https://doi.org/10.1016/0272-7714(91)90081-L

Smith N.F., Wilcox C., Lessman J.M. 2009. Fiddler crab burrowing affects growth and production of the white mangrove (Laguncularia racemosa) in a restored Florida coastal marsh. Mar. Biol. 156: 2255-2266. https://doi.org/10.1007/s00227-009-1253-7

Tamaei S. 2005. Study of gray mangrove (Avicennia marina) afforestation for greening of desert coasts: Gray mangrove afforestation on banks of artificial channel across a sabkha and the established biotic community. Jpn. J. Ecol. 55: 1-9.

Thampanya U., Vermaat J.E., Terrados J. 2002. The effect of increasing sediment accretion on the seedlings of three common Thai mangrove species. Aquat. Bot. 74: 315-325. https://doi.org/10.1016/S0304-3770(02)00146-8

Thomas N., Lucas R., Bunting P., et al. 2017. Distribution and drivers of global mangrove forest change, 1996-2010. PLoS ONE 12: e0179302. https://doi.org/10.1371/journal.pone.0179302 PMid:28594908 PMCid:PMC5464653

Publicado

2022-09-21

Cómo citar

1.
Abrogueña JBR, Anton A, Pinn Woo S, Baptista M, Duarte CM, Azher Hussain S, Shoeb M, Qurban M. El impacto de las inundaciones y las tormentas de arena en el crecimiento y la supervivencia de las plántulas del manglar Avicennia marina en el sur del Mar Rojo. Sci. mar. [Internet]. 21 de septiembre de 2022 [citado 22 de julio de 2024];86(3):e041. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1930

Número

Sección

Artículos