Distribución y cambios del sistema sbGnRH en machos de Rastrelliger brachysoma durante el período reproductivo

Autores/as

DOI:

https://doi.org/10.3989/scimar.05023.017

Palabras clave:

agricultura, alimentación, sistema Gnrh-Gths, histología, caballa, productividad, testículo

Resumen


Rastrelliger brachysoma es una especie candidata para la piscicultura marina, pero la reproducción de individuos cautivos de esta especie ha sido problemática. Este estudio examina las diferencias en el eje hipotálamo-hipófisis-gónada (eje HPG), junto con el desarrollo de tejidos reproductivos, entre machos cautivos y salvajes de R. brachysoma. El índice gonadosomático (IGS) de machos salvajes de R. brachysoma sexualmente maduros fue de 1.12±0.34 y 1.94±0.26 durante la estación no-reproductiva y reproductiva, respectivamente. Los R. brachysoma cautivos mostraron un IGS de 1.88±0.17. Todos los R. brachysoma salvajes se encontraban en un estado de espermatogénesis tardío, independientemente de la estación. Los resultados de inmunotinción mostraron que las neuronas sbGnRH-inmunoreactivas se distribuían en tres áreas del cerebro, nucleus periventricularis, nucleus preopticus y nucleus lateralis tuberis. Se detectó inmunoreactividad para Fsh y Lh también en la hipófisis. Los niveles de mRNA de sbgnrh y gths en cerebro no fueron significativamente diferentes entre las estaciones de reproducción y no-reproducción, aunque se observaron niveles de mRNA menores (diferencia en nivel o porcentaje) en individuos cautivos que en salvajes. Estos resultados sugieren que las hormonas analizadas controlan el desarrollo testicular en R. brachysoma y que la inhibición de la reproducción en cautividad podría ser debida a unos menores niveles de expresión relativa de los genes de Fsh y Lh.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amano M., Oka Y., Yamanome T., et al. 2002. Three GnRH systems in the brain and pituitary of a pleuronectiform fish, the barfin flounder Verasper moseri. Cell Tissue Res. 309: 323-329. https://doi.org/10.1007/s00441-002-0594-z PMid:12172792

Bancroft J.D., Gamble M. 2008. Theory and Practice of Histological Techniques. Elsevier Health Sciences, London, UK, 725 pp.

Department of Fisheries. 2012. Fisheries Statistics of Thailand [Online]. Accessed 8 Sep. 2020. http://164.115.22.205/it-stat/images/stories/yearbook/yearbook2555.pdf

Department of Fisheries. 2014. Fisheries Statistics of Thailand [Online]. Accessed 8 Sep. 2020. https://www4.fisheries.go.th/local/file_document/ 20200714140927_1_file.pdf

Dietrich D., Krieger H.O. 2009. Histological Analysis of Endocrine Disruptive Effects in Small Laboratory Fish. John Wiley & Sons, New Jersey, USA, 341p. https://doi.org/10.1002/9780470431795

González‐Martínez D., Zmora N., Mañanos E., et al. 2002. Immunohistochemical localization of three different prepro‐GnRHs in the brain and pituitary of the European sea bass (Dicentrarchus labrax) using antibodies to the corresponding GnRH‐associated peptides. J. Comp. Neurol. 446: 95-113. https://doi.org/10.1002/cne.10190 PMid:11932929

Guzmán J.M., Rubio M., Ortiz-Delgado J.B., et al. 2009. Comparative gene expression of gonadotropins (FSH and LH) and peptide levels of gonadotropin-releasing hormones (GnRHs) in the pituitary of wild and cultured Senegalese sole (Solea senegalensis) broodstocks. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153: 266-277. https://doi.org/10.1016/j.cbpa.2009.02.032 PMid:19264148

Jadhao A., Pinelli C. 2001. Galanin-like immunoreactivity in the brain and pituitary of the "four-eyed" fish, Anableps anableps. Cell Tissue Res. 306: 309-318. https://doi.org/10.1007/s004410100445 PMid:11702242

King J.A., Millar R.P. 1992. Evolution of gonadotropin-releasing hormones. Trends Endocrinol. Metab. 3: 339-346. https://doi.org/10.1016/1043-2760(92)90113-F

Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262 PMid:11846609

Nagahama Y. 2000. Gonadal steroid hormones: major regulators of gonadal sex differentiation and gametogenesis in fish. In: Norberg B (ed), International Symposium on the Reproductive Physiology of Fish, Proceedings of the 6th International Symposium on the Reproductive Physiology of Fish, Bergen, Norway, pp. 211-222.

Nyuji M., Shiraishi T., Selvaraj S., et al. 2011. Immunoreactive changes in pituitary FSH and LH cells during seasonal reproductive and spawning cycles of female chub mackerel Scomber japonicus. Fish Sci. 77: 731-739. https://doi.org/10.1007/s12562-011-0380-5

Nyuji M., Selvaraj S., Kitano H., et al. 2012a. Immunoreactivity of gonadotrophs (FSH and LH Cells) and gonadotropin subunit gene expression in the male chub mackerel Scomber japonicus pituitary during the reproductive cycle. Zool. Sci. 29: 623-629. https://doi.org/10.2108/zsj.29.623 PMid:22943787

Nyuji M., Shiraishi T., Kitano H., et al. 2012b. Induction of final oocyte maturation and ovulation in jack mackerel, Trachurus japonicus, temporarily reared in captivity. J. Fac. Agr. Kyushu U. 57: 427-430. https://doi.org/10.5109/25201

Nyuji M., Fujisawa K., Imanaga Y., et al. 2013. GnRHa-induced spawning of wild-caught Jack mackerel Trachurus japonicus. Fish Sci. 79: 251-258. https://doi.org/10.1007/s12562-013-0599-4

Okuzawa K., Granneman J., Bogerd J., et al. 1997. Distinct expression of GnRH genes in the red seabream brain. Fish Physiol. Biochem. 17: 71-79. https://doi.org/10.1023/A:1007760329837

Palmieri G., Acone F., Desantis S., et al. 2008. Brain morphology and immunohistochemical localization of the gonadotropin-releasing hormone in the bluefin tuna, Thunnus thynnus. Eur. J. Histochem. 52: 19-28. https://doi.org/10.4081/1182 PMid:18502719

Pham K.X., Amano M., Amiya N., et al. 2007. Immunohistochemical localization of three GnRH systems in brain and pituitary of Japanese flounder. Fish. Sci. 73: 1113-1122. https://doi.org/10.1111/j.1444-2906.2007.01443.x

Planas J.V., Swanson P., Dickhoff W.W. 1993. Regulation of testicular steroid production in vitro by gonadotropins (GTH I and GTH II) and cyclic AMP in coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. 91: 8-24. https://doi.org/10.1006/gcen.1993.1099 PMid:8405894

Quérat B., Tonnerre-Doncarli C., Géniès F., et al. 2001. Duality of gonadotropins in gnathostomes. Gen. Comp. Endocrinol. 124: 308-314. https://doi.org/10.1006/gcen.2001.7715 PMid:11742514

Selvaraj S., Kitano H., Fujinaga Y., et al. 2009. Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zool. Sci. 26: 828-839. https://doi.org/10.2108/zsj.26.828 PMid:19968470

Selvaraj S., Kitano H., Amano M., et al. 2012. Molecular characterization and expression profiles of three GnRH forms in the brain and pituitary of adult chub mackerel (Scomber japonicus) maintained in captivity. Aquaculture 356: 200-210. https://doi.org/10.1016/j.aquaculture.2012.05.015

Senarat S., Kettratad J., Kangwanrangsan N., et al. 2019. The sbGnRH - GTH system in the female short mackerel, Rastrelliger brachysoma (Bleeker, 1851), during breeding season: implications for low gamete production in captive broodstocks. Fish Physiol. Biochem. 45: 1-18. https://doi.org/10.1007/s10695-018-0509-x PMid:30094681

Sherwood N. 1997. Origin and evolution of GnRH in vertebrates and invertebrates. In: Parhar S., Sakuma Y. (eds). GnRH Neurons: Gene to Behavior Brain Shuppan Publishing, Tokyo, pp. 3-25.

Sherwood N.M., Adams B.A. 2005. Gonadotropin-releasing hormone in fish: Evolution, expression and regulation of the GnRH gene. In: Melamed P., Sherwood N.M. (eds). Hormones and Their Receptors in Fish. Reproduction. World Scientific Publishing, Singapore, pp. 1-39. https://doi.org/10.1142/9789812569189_0001

Shimizu A, Yamashita M. 2002. Purification of mummichog (Fundulus heteroclitus) gonadotropins and their subunits, using an immunochemical assay with antisera raised against synthetic peptides. Gen. Comp. Endocrinol. 125: 79-91. https://doi.org/10.1006/gcen.2001.7741 PMid:11825037

Shimizu A., Tanaka H., Kagawa H. 2003. Immunocytochemical applications of specific antisera raised against synthetic fragment peptides of mummichog GtH subunits: examining seasonal variations of gonadotrophs (FSH cells and LH cells) in the mummichog and applications to other acanthopterygian fishes. Gen. Comp. Endocrinol. 132: 35-45. https://doi.org/10.1016/S0016-6480(03)00037-6

Tucker C.S., Hargreaves J.A. 2004. Biology and Culture of Cannel Catfish. Elsevier Science, 686p.

Tyler C., Sumpter J., Kawauchi H., et al.1991. Involvement of gonadotropin in the uptake of vitellogenin into vitellogenic oocytes of the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 84: 291-299. https://doi.org/10.1016/0016-6480(91)90052-8

Zohar Y., Mylonas C.C. 2001. Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture 197: 99-136. https://doi.org/10.1016/B978-0-444-50913-0.50009-6

Publicado

2021-09-02

Cómo citar

1.
Senarat S, Kettratad J, Jiraungkoorskul W, Kangwanrangsan N, Amano M, Shimizu A, Plumley FG, Tipdomrongpong S. Distribución y cambios del sistema sbGnRH en machos de Rastrelliger brachysoma durante el período reproductivo. Sci. mar. [Internet]. 2 de septiembre de 2021 [citado 23 de julio de 2024];85(3):187-95. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1906

Número

Sección

Artículos