Reproducción sexual vs. propagación clonal en la recuperación de una pradera marina después de un evento climático extremo

Autores/as

DOI:

https://doi.org/10.3989/scimar.04843.06A

Palabras clave:

recuperación de la pradera, Zostera marina, diversidad genotípica, impacto, disturbio, característica de vida

Resumen


Las plantas marinas con flores pueden reproducirse sexualmente y de manera clonal, y la contribución relativa de estos dos modos puede depender de las condiciones ambientales. La Zostera marina, una planta marina ampliamente distribuida en el hemisferio norte, puede formar praderas anuales y perennes con distintas proporciones de propagación sexual frente a clonación, según el régimen de perturbación ambiental. Estudiamos la hipótesis de que la contribución de la propagación sexual varía durante la recuperación de una pradera marina. En este estudio, comparamos la proporción de la propagación sexual versus clonal de una pradera de Z. marina perenne, antes de su desaparición debido a las tormentas de invierno y después de la recuperación. Antes de la perturbación, la diversidad genotípica era alta, lo que indicaba eventos frecuentes de reproducción sexual, lo que podría crear un banco de semillas abundante. La germinación de las plántulas permitió que la población se recuperara después de la perturbación extrema. A medida que pasaban los meses, las plántulas se volvían raras y finalmente se ausentaban, dando lugar a brotes adultos. En una etapa avanzada de colonización, los brotes colonizaron el área mediante crecimiento vegetativo, lo que disminuyó la diversidad genotípica. A pesar de esta reducción en el tiempo, la diversidad genotípica de la nueva pradera sigue siendo alta, lo que demuestra la importancia de la reproducción sexual en la recuperación y la persistencia de la pradera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alberto F. 2009. MsatAllele_1.0: an R package to visualize the binning of microsatellite alleles. J. Hered. 100: 394-397. https://doi.org/10.1093/jhered/esn110 PMid:19126639

Alexandre A., Santos R., Serrão E. 2005. Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar. Ecol. Prog. Ser. 298: 115-122. https://doi.org/10.3354/meps298115

Arnaud-Haond S., Belkhir K. 2007. GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Resour. 7: 15-17. https://doi.org/10.1111/j.1471-8286.2006.01522.x

Bell S.S., Fonseca M.S., Kenworthy W.J. 2008. Dynamics of a subtropical seagrass landscape: links between disturbance and mobile seed banks. J. Landsc. Ecol. 23: 67-74. https://doi.org/10.1007/s10980-007-9137-z

Bos A.R., Bouma T.J., de Kort G.L., et al. 2007. Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar. Coast. Shelf Sci. 74: 344-348. https://doi.org/10.1016/j.ecss.2007.04.006

Cabaço S., Santos R. 2012. Seagrass reproductive effort as an ecological indicator of disturbance. Ecol. Indic. 23: 116-122. https://doi.org/10.1016/j.ecolind.2012.03.022

Craine J.M. 2009. Resource strategies of wild plants. Princeton University Press. https://doi.org/10.1515/9781400830640

Cunha A.H., Assis J.F., Serrão E.A. 2013. Seagrasses in Portugal: a most endangered marine habitat. Aquat. Bot. 104: 193-203. https://doi.org/10.1016/j.aquabot.2011.08.007

Cunha A.H., Erzini K., Serrão E.A., et al. 2014. Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine Park. J. Coast. Conserv. 18: 643-655. https://doi.org/10.1007/s11852-014-0336-x

Den Hartog C. 1970. The sea-grasses of the world. North-Holland Pub. Co., Amsterdam.

Den Hartog C. 1987. "Wasting disease" and other dynamic phenomena in Zostera beds. Aquat. Bot. 27: 3-14 https://doi.org/10.1016/0304-3770(87)90082-9

Diekmann O.E., Serrao E.A. 2012. Range-edge genetic diversity: locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina. Mol. Ecol. 21: 1647-1657. https://doi.org/10.1111/j.1365-294X.2012.05500.x PMid:22369278

Dorken M.E., Eckert C.G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J. Ecol. 89: 339-350. https://doi.org/10.1046/j.1365-2745.2001.00558.x

Doyle J.J., Doyle J.L. 1988. Natural interspecific hybridization in eastern North American Claytonia. Am. J. Bot. 75: 1238-1246. https://doi.org/10.1002/j.1537-2197.1988.tb08838.x

Evans S.M., Vergés A., Poore A.G. 2017. Genotypic diversity and short-term response to shading stress in a threatened seagrass: Does low diversity mean low resilience? Front. Plant. Sci. 8: 1417. https://doi.org/10.3389/fpls.2017.01417 PMid:28855915 PMCid:PMC5557787

Excoffier L., Smouse P.E., Quattro J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

Goudet J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86: 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627

Greve T.M., Krause-Jensen D., Rasmussen M.B., et al. 2005. Means of rapid eelgrass (Zostera marina L.) recolonisation in former dieback areas. Aquat. Bot. 82: 143-156. https://doi.org/10.1016/j.aquabot.2005.03.004

Hammerstrom K.K., Kenworthy W.J., Fonseca M.S., et al. 2006. Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat. Bot. 84: 110-120. https://doi.org/10.1016/j.aquabot.2005.08.002

Hemminga M.A., Duarte C.M. 2000. Seagrass ecology. Cambridge University Press. https://doi.org/10.1017/CBO9780511525551

Hughes A.R., Stachowicz, J.J. 2004. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101: 8998-9002. https://doi.org/10.1073/pnas.0402642101 PMid:15184681 PMCid:PMC428461

Jarvis J.C., Moore K.A. 2010. The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia 649: 55-68. https://doi.org/10.1007/s10750-010-0258-z

Jarvis J.C., Moore K.A., Kenworthy W.J. 2014. Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. J. Exp. Mar. Biol. Ecol. 459: 126-136. https://doi.org/10.1016/j.jembe.2014.05.024

Keddy C.J., Patriquin D.G. 1978. An annual form of eelgrass in Nova Scotia. Aquat. Bot. 5: 163-170. https://doi.org/10.1016/0304-3770(78)90059-1

Kim T.H., Rark S.R., Kim Y.K., et al. 2008. Growth dynamics and carbon incorporation of the seagrass Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea. Algae 23: 241-250. https://doi.org/10.4490/ALGAE.2008.23.3.241

Kim S.H., Kim J.H., Park S.R., et al. 2014. Annual and perennial life history strategies of Zostera marina populations under different light regimes. Mar. Ecol. Prog. Ser. 509: 1-13. https://doi.org/10.3354/meps10899

Larkum A.W.D., Den Hartog C. 1989. Evolution and biogeography of seagrasses. Biology of seagrasses. In: Larkum A.W., McComb A.J., et al. (eds), Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp. 112-156.

Marbà N., Duarte C.M. 1998. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 174: 269-280. https://doi.org/10.3354/meps174269

Marion S.R., Orth R.J. 2010. Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds. Restor. Ecol. 18: 514-526. https://doi.org/10.1111/j.1526-100X.2010.00692.x

Massa S.I., Paulino C.M., Serrão E.A., et al. 2013. Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecol. 13: 39. https://doi.org/10.1186/1472-6785-13-39 PMid:24152760 PMCid:PMC3818440

Meirmans P.G., Van Tienderen P.H. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4: 792-794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

Meling-López A.E., Ibarra-Obando S.E. 1999. Annual life cycles of two Zostera marina L. populations in the Gulf of California: contrasts in seasonality and reproductive effort. Aquat. Bot. 65: 59-69. https://doi.org/10.1016/S0304-3770(99)00031-5

Michalakis Y., Excoffier L. 1996. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142: 1061-1064.

Olesen B. 1999. Reproduction in Danish eelgrass (Zostera marina L.) stands: size-dependence and biomass partitioning. Aquat. Bot. 65: 209-219. https://doi.org/10.1016/S0304-3770(99)00041-8

Olesen B., Sand-Jensen K. 1994. Patch dynamics of eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 106: 147-156. https://doi.org/10.3354/meps106147

Orth R.J., Luckenbach M.L., Marion S.R., et al. 2006. Seagrass recovery in the Delmarva coastal bays, USA. Aquat. Bot. 84: 26-36. https://doi.org/10.1016/j.aquabot.2005.07.007

Paetkau D., Calvert W., Stirling I., et al. 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x PMid:7663752

Park S.R., Kim Y.K., Kim J.H., et al. 2011. Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J. Exp. Mar. Biol. Ecol. 407: 275-283. https://doi.org/10.1016/j.jembe.2011.06.023

Paulo D., Cunha A.H., Boavida J., et al. 2019. Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Front. Mar. Sci. 6: 52. https://doi.org/10.3389/fmars.2019.00052

Qin L.Z., Li W.T., Zhang X.M., et al. 2014. Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetl. Ecol. Manag. 22: 671-682. https://doi.org/10.1007/s11273-014-9363-5

Qin L.Z., Li W.T., Zhang X., et al. 2016. Recovery of the eelgrass Zostera marina following intense Manila clam Ruditapes philippinarum harvesting disturbance in China: The role and fate of seedlings. Aquat. Bot. 130: 27-36. https://doi.org/10.1016/j.aquabot.2016.01.002

R Core Development Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Rafajlovi? M., Kleinhans D., Gulliksson C., et al. 2017. Neutral processes forming large clones during colonization of new areas. J. Evol. Biol. 30: 1544-1560. https://doi.org/10.1111/jeb.13124 PMid:28557006

Reusch T.B.H. 2000. Five microsatellite loci in eelgrass Zostera marina and a test of cross-species amplification in Z. noltii and Z. japonica. Mol. Ecol. 9: 371-373. https://doi.org/10.1046/j.1365-294x.2000.00874-4.x PMid:10736037

Reusch T.B.H. 2001. Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J. Evol. Biol. 14: 129-138. https://doi.org/10.1046/j.1420-9101.2001.00257.x PMid:29280577

Reusch T.B. 2006. Does disturbance enhance genotypic diversity in clonal organisms? A field test in the marine angiosperm Zostera marina. Mol. Ecol. 15: 277-286. https://doi.org/10.1111/j.1365-294X.2005.02779.x PMid:16367846

Reusch T.B.H., Stam W.T., Olsen J.L. 2000. A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol. Ecol. 9: 127-140. https://doi.org/10.1046/j.1365-294x.2000.00839.x PMid:10672157

Reusch T.B., Ehlers A., Hämmerli A., et al. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 102: 2826-2831. https://doi.org/10.1073/pnas.0500008102 PMid:15710890 PMCid:PMC549506

Santamaría-Gallegos N.A., Sánchez-Lizaso J.L., Félix-Pico E.F. 2000. Phenology and growth cycle of annual subtidal eelgrass in a subtropical locality. Aquat. Bot. 66: 329-339. https://doi.org/10.1016/S0304-3770(99)00082-0

Short F.T., Carruthers T.J.R., Waycott M., et al. 2010. Zostera marina. The IUCN red list of threatened species. Version 2014.2.

Stam T.B.R., Wytze T., Olsen J.L. 1999. Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations. Mol. Ecol. 8: 317-321. https://doi.org/10.1046/j.1365-294X.1999.00531.x PMid:10065546

Tanner C.E., Parham T. 2010. Growing Zostera marina (eelgrass) from seeds in land-based culture systems for use in restoration projects. Rest. Ecol. 18: 527-537. https://doi.org/10.1111/j.1526-100X.2010.00693.x

van Lent F., Verschuure J.M. 1994. Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands. I. Population dynamics. Aquat. Bot. 48: 31-58. https://doi.org/10.1016/0304-3770(94)90072-8

Waycott M., Duarte C.M., Carruthers T.J., et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106: 12377-12381. https://doi.org/10.1073/pnas.0905620106 PMid:19587236 PMCid:PMC2707273

Williams S.L. 1988. Disturbance and recovery of a deep-water Caribbean seagrass bed. Mar. Ecol. Prog. Ser. 42: 63-71. https://doi.org/10.3354/meps042063

Publicado

2019-12-30

Cómo citar

1.
Paulo D, Diekmann O, Ramos AA, Alberto F, Alvares Serrão E. Reproducción sexual vs. propagación clonal en la recuperación de una pradera marina después de un evento climático extremo. Sci. mar. [Internet]. 30 de diciembre de 2019 [citado 22 de julio de 2024];83(4):357-63. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1824

Número

Sección

Artículos