Influencia del tamaño en la supervivencia de juveniles de merluza en el mar Mediterráneo
DOI:
https://doi.org/10.3989/scimar.04857.16APalabras clave:
supervivencia juvenil, merluza europea, mar Mediterráneo, dependencia del tamañoResumen
La mayoría de estudios de merluza europea se han centrado en el proceso de reclutamiento y sus hábitats preferentes, mientras que la información es mucho más escasa sobre los procesos ecológicos asociados a la fase juvenil (i.e. segundo año de vida aproximadamente), la cual se considera la más impactada por la pesca de arrastre en el Mediterráneo. En este estudio usamos la información del programa MEDITS para investigar, temporal y espacialmente, la posible influencia del tamaño corporal y el crecimiento sobre la supervivencia desde la fase de reclutas (edad 0) a la de juveniles (edad 1). También se ha evaluado la posible influencia de la temperatura y la clorofila superficial. A una escala biogeográfica, los resultados corroboran la influencia de la talla sobre la supervivencia, con mayor supervivencia asociada a áreas de mayor talla media de reclutas y juveniles. El mismo patrón se observó a escala interanual en algunas zonas del oeste el Mediterráneo, en las cuales se detectó también un efecto de denso-dependencia en el reclutamiento. Sin embargo, el patrón interanual más recurrente fue un efecto negativo de la talla sobre la supervivencia, que podría ser atribuido tanto a cambios ontogenéticos en la capturabilidad de los peces como a la posible infraestimación de los pulsos interanuales de reclutamiento que pueden resultar estacionalmente inaccesibles a las campañas MEDITS. Los resultados también evidencian que la supervivencia en Alborán y el Adriático depende de la variabilidad de la producción primaria, y que Córcega y Cerdeña podrían ser potencialmente áreas de alimentación que reciben juveniles de áreas adyacentes. El presente estudio evidencia la importancia de la influencia de la talla corporal y el crecimiento sobre la supervivencia juvenil de la merluza europea en el mar Mediterráneo.
Descargas
Citas
Anonymous 2017. MEDITS-Handbook. Version n. 9, MEDITS Working Group, 106 pp.
Abella A. J., Caddy J. F., Serena F. 1997. Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Living Res. 10: 257-269. https://doi.org/10.1051/alr:1997029
Abella A.J, Serena F., Ria M. 2005. Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fish. Res. 71: 295-310. https://doi.org/10.1016/j.fishres.2004.08.036
Agostini V.N., Francis R.C., Hollowed A.B. et al. 2006. The relationship between Pacific hake (Merluccius productus) distribution and poleward subsurface flow in the California Current System. Can. J. Fish. Aquat. Sci. 63: 2648-2659. https://doi.org/10.1139/f06-139
Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish. 4: 147-190. https://doi.org/10.1046/j.1467-2979.2003.00120.x
Aldebert Y., Recasens L., Lleonart J. 1993. Analysis of gear interactions in a hake fishery: the case of the Gulf of Lions (NW Mediterranean). Sci. Mar. 57: 207-217.
Andersen H. Jacobsen N.S., Jansen T. et al. 2017. When in life does density dependence occur in fish populations? Fish Fish. 18: 656-667. https://doi.org/10.1111/faf.12195
Arneri E., Morales-Nin B. 2000. Aspects of the early life history of European hake from the central Adriatic. J. Fish Biol. 56: 1368-1380. https://doi.org/10.1111/j.1095-8649.2000.tb02149.x
Bartolino V., Colloca F., Sartor P., et al. 2008a. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fish. Res. 93: 277-288. https://doi.org/10.1016/j.fishres.2008.01.007
Bartolino V., Ottavi A., Colloca F. et al. 2008b. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J Mar. Sci. 65: 963-969. https://doi.org/10.1093/icesjms/fsn079
Baudron A.R., Fernandes P.G. 2015. Adverse consequences of stock recovery: European hake, a new "choke" species under a discard ban? Fish Fish. 16: 563-575. https://doi.org/10.1111/faf.12079
Belcari P., Ligas A., Viva C. 2006. Age determination and growth of juveniles of the European hake, Merluccius merluccius (L., 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fish. Res. 78: 211-217. https://doi.org/10.1016/j.fishres.2006.01.006
Bertrand J.A., Gil de Sola L., Papaconstantinou C et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29
Caddy J.F. 2015. Criteria for sustainable fisheries on juveniles illustrated for Mediterranean hake: control the juvenile harvest, and safeguard spawning refugia to rebuild population fecundity. Sci. Mar. 79(3): 287-299. https://doi.org/10.3989/scimar.04230.06A
Caddy J.F., Abella A.J. 1999. Reconstructing reciprocal M vectors from length cohort analysis (LCA) of commercial size frequencies of hake, and fine mesh trawl surveys over the same grounds. Fish. Res. 41: 169-175. https://doi.org/10.1016/S0165-7836(99)00015-6
Cadrin S., Secor D. 2009. Accounting for spatial population structure in stock assessment: past, present, and future. In: Beamish R., Rothschild B. (eds), The Future of Fisheries Science in North America. Springer Publishing, Dordrecht, pp. 405-426. https://doi.org/10.1007/978-1-4020-9210-7_22
Cantafaro A., Ardizzone G., Enea M. et al. 2017. Assessing the importance of nursery areas of European hake (Merluccius merluccius) using a body condition index. Ecol. Indic. 81: 383-389. https://doi.org/10.1016/j.ecolind.2017.06.012
Catalán I.A., Macías D., Solé J. et al. 2013. Stay off the motorway: resolving the pre-recruitment life history dynamics of the European anchovy in the SW Mediterranean through a spatially-explicit individual-based model (SEIBM). Progr. Oceanog. 111: 140-153. https://doi.org/10.1016/j.pocean.2013.02.001
Ciannelli L., Dingsør G.E., Bogstad O. et al. 2007. Spatial anatomy of species survival: effects of predation and climate-driven environmental variability. Ecology 88: 635-646. https://doi.org/10.1890/05-2035 PMid:17503592
Colloca F., Bartolino V., Lasinio G.J. et al. 2009. Identifying fish nurseries using density and persistence measures. Mar. Ecol. Progr. Ser. 381: 287-296. https://doi.org/10.3354/meps07942
Colloca F., Cardinale M., Maynou F., et al. 2013. Rebuilding Mediterranean fisheries: a new paradigm for ecological sustainability. Fish Fish. 14: 89-109. https://doi.org/10.1111/j.1467-2979.2011.00453.x
Conover D.O. 2007. Nets versus nature. Nature 450: 179-180. https://doi.org/10.1038/450179a PMid:17994077
Cormon X., Loots C., Vaz S. et al. 2014. Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) in the North Sea. ICES J. Mar. Sci. 71: 1342-1355. https://doi.org/10.1093/icesjms/fsu120
Druon J.N., Fiorentino F., Murenu M., et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: An ecological niche approach. Progr. Oceanogr. 130: 188-204. https://doi.org/10.1016/j.pocean.2014.11.005
Fernandes P.G., Ralph G.M., Nieto A. et al. 2017. Coherent assessments of Europe's marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1: 0170. https://doi.org/10.1038/s41559-017-0200
Ferraton F., Harmelin-Vivien M., Mellon-Duval C. et al. 2007. Spatio-temporal variation in diet may affect condition and abundance of juvenile European hake in the Gulf of Lions (NW Mediterranean). Mar. Ecol. Progr. Ser. 337: 197-208. https://doi.org/10.3354/meps337197
Fiorentino F., Massutí E., Tinti S. et al. 2014. Stock units: Identification of distinct biological units (stock units) for different fish and shellfish species and among different GFCM-GSA. STOCKMED Deliverable 03: FINAL REPORT. September 2014, 310 pp.
Fraser H.M., Greenstreet S.P.R., Piet G.J. 2007. Taking account of catchability in groundfish survey trawls: implications for estimating demersal fish biomass. ICES J. Mar. Sci. 64: 1800-1819. https://doi.org/10.1093/icesjms/fsm145
García-Rodriguez M., Esteban A. 2002. How fast does hake grow? A study on the Mediterranean hake (Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions data. Sci. Mar. 66: 145-156. https://doi.org/10.3989/scimar.2002.66n2145
GFCM. 2016. Working Group on Stock Assessment of Demersal Species (WGSAD). GFCM and FAO headquarters, Rome, Italy, 7-12 November 2016. Final Report. 74 pp.
Goethel D.R., Berger A.M. 2017. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74: 1878-1894. https://doi.org/10.1139/cjfas-2016-0290
Hidalgo M., Massutí E., Moranta J. et al. 2008. Seasonal and short spatial patterns in European hake (Merluccius merluccius L.) recruitment process at the Balearic Islands (western Mediterranean): the role of environment on distribution and condition. J. Mar. Syst. 71: 367-384. https://doi.org/10.1016/j.jmarsys.2007.03.005
Hidalgo M., Tomas J., Moranta J. et al. 2009. Intra-annual recruitment events of a shelf species around an island system in the NW Mediterranean. Est. Coast. Shelf Sci. 83: 227-238. https://doi.org/10.1016/j.ecss.2009.03.037
Hidalgo M., Rouyer T., Molinero J. C, et al. 2011. Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics. Mar. Ecol. Prog. Ser. 426: 1-12. https://doi.org/10.3354/meps09077
Hidalgo M., Olsen E.M., Ohlberger J. et al. 2014. Contrasting evolutionary demography induced by fishing: the role of adaptive phenotypic plasticity. Ecol. Applic. 24: 1101-1114. https://doi.org/10.1890/12-1777.1 PMid:25154099
Houde E.D. 1997. Patterns and consequences of selective processes in teleost early life histories. In: Chambers R.C. and Trippel E.A. (eds), Early Life History and Recruitment in Fish Populations. Chapman & Hall Fish and Fish. Series, vol 21. Springer, Dordrecht https://doi.org/10.1007/978-94-009-1439-1_6
Kavadas S., Maina I., Damalas, D. et al. 2015. Multi-Criteria Decision Analysis as a tool to extract fishing footprints: application to small scale fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Medit. Mar. Sci. 16: 294-304. https://doi.org/10.12681/mms.1087
Kerr L.A., Hintzen N.T., Cadrin S.X. et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74: 1708-1722. https://doi.org/10.1093/icesjms/fsw188
Jørgensen C., Holt R.E. 2013. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. J. Sea Res. 75: 8-18. https://doi.org/10.1016/j.seares.2012.04.003
Le Pape O., Bonhommeau S. 2015. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16: 373-398. https://doi.org/10.1111/faf.12063
Lembo G., Silecchia T., Carbonara P., et al. 2000. Nursery areas of Merluccius merluccius in the Italian Seas and in the East Side of the Adriatic Sea. Biol. Mar. Medit. 7: 98-116.
Levin P.S., Stunz G.W. 2005. Habitat triage for exploited fishes: Can we identify essential "Essential Fish Habitat"? Est. Coast. Shelf Sci. 64: 70-78. https://doi.org/10.1016/j.ecss.2005.02.007
Ligas A., Colloca F., Lundy M.G. et al. 2015. Modeling the growth of recruits of European hake (Merluccius merluccius) in the northwestern Mediterranean Sea with generalized additive models. Fish. Bull. 113: 69-82. https://doi.org/10.7755/FB.113.1.7
Link J. S., Browman H.I. 2017. Operationalizing and implementing ecosystem-based management. ICES J. Mar. Sci. 74: 379-381. https://doi.org/10.1093/icesjms/fsw247
Lorenzen K., Enberg K. 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc. R. Soc. Lon. B Biol. Sci. 269: 49-54. https://doi.org/10.1098/rspb.2001.1853 PMid:11788036 PMCid:PMC1690856
Maeda E.E., Mäntyniemi S., Despoti S. et al. 2017. A Bayesian model of fisheries discards with flexible structure and priors defined by experts. Ecol. Mod. 366: 1-14. https://doi.org/10.1016/j.ecolmodel.2017.10.007
Mahévas S., Trenkel V.M., Doray M. 2011. Hake catchability by the French trawler fleet in the Bay of Biscay: estimating technical and biological components. ICES J. Mar. Sci. 68: 107-118. https://doi.org/10.1093/icesjms/fsq140
Mellon-Duval C., De Pontual H., Métral L. et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215
Morales-Nin B., Moranta J. 2004. Recruitment and post-settlement growth of juvenile Merluccius merluccius on the western Mediterranean shelf. Sci. Mar. 68: 399-409. https://doi.org/10.3989/scimar.2004.68n3399
Oguz T., Macias D., Garcia-Lafuente J.et al. 2014. Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean). PloS ONE 9: e111482. https://doi.org/10.1371/journal.pone.0111482 PMid:25372789 PMCid:PMC4221033
Paradinas I., Martín M., Pennino M.G. et al. 2016. Identifying the best fishing-suitable areas under the new European discard ban. ICES J. Mar. Sci. 73: 2479-2487. https://doi.org/10.1093/icesjms/fsw114
Pennino M.G., Vilela R., Valeiras J. et al. 2017. Discard management: A spatial multi-criteria approach. Mar. Policy 77: 144-151. https://doi.org/10.1016/j.marpol.2016.12.022
Pita A., Leal A., Santafé-Muñoz A., et al. 2016. Genetic inference of demographic connectivity in the Atlantic European hake metapopulation (Merluccius merluccius) over a spatio-temporal framework. Fish. Res. 179: 291-301. https://doi.org/10.1016/j.fishres.2016.03.017
Puerta P., Hidalgo M., González M., et al. 2014. Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean. Mar. Ecol. Prog. Ser. 514: 105-118. https://doi.org/10.3354/meps10972
Puerta P., Hunsicker M.E., Quetglas A. et al. 2015. Spatially explicit modeling reveals cephalopod distributions match contrasting trophic pathways in the western Mediterranean Sea. PloS ONE 10: e0133439. https://doi.org/10.1371/journal.pone.0133439 PMid:26201075 PMCid:PMC4511516
Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732. https://doi.org/10.3989/scimar.2008.72n4721
Rey J., Árbol J., Gil de Sola L. 2004. Seasonal recruitment of hake in the Alboran Sea (SW Mediterranean). Rapp. Comm. Int. Mer Medit. 37: 427.
Rueda L., Massutí E., Alvarez-Berastegui D. et al. 2015. Effect of intra-specific competition, surface chlorophyll and fishing on spatial variation of gadoid's body condition. Ecosphere 6: 1-17. https://doi.org/10.1890/ES15-00087.1
Ruiz J., Macias D., Rincon M.M. et al. 2013. Atlantic inflow controls fish recruitment at the Western Mediterranean. Rapp. Comm. Int. Mer Medit. 40: 158.
Sbrana M., Belcari P., De Ranieri S. et al. 2007. Comparison of the catches of European hake (Merluccius merluccius, L. 1758) taken with experimental gillnets of different mesh sizes in the northern Tyrrhenian Sea (Western Mediterranean). Sci. Mar. 71: 47-56. https://doi.org/10.3989/scimar.2007.71n147
Scientific, Technical and Economic Committee for Fisheries (STECF). 2015. Mediterranean assessments part 1 (STECF-15-18). Publ. Off. Europ. Union, Luxembourg, EUR 27638 EN, JRC 98676, 410 pp.
Schultz E.T., Conover D.O. 1997. Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia). Oecologia 109: 516-529. https://doi.org/10.1007/s004420050112 PMid:28307335
Sogard S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60: 1129-1157.
Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J.A. et al. (eds), Campagne internationale du chalutage démersal en Méditerraneé. Campagne 1995. EU Final Report, Vol. III.
Suthers I.M. 1998. Bigger? Fatter? Or is faster growth better? Considerations on condition in larval and juvenile coral-reef fish. Austral Ecol. 23: 265-273. https://doi.org/10.1111/j.1442-9993.1998.tb00730.x
Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The alarming decline of Mediterranean fish stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210
Vielmini I., Perry A.L., Cornax M.J. 2017. Untying the Mediterranean Gordian knot: a twenty first century challenge for fisheries management. Front. Mar. Sci. 4: 195. https://doi.org/10.3389/fmars.2017.00195
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.