Distribución espacial a gran escala de la megafauna de aguas profundas en fondos arrastrables del Mediterráneo

Autores/as

DOI:

https://doi.org/10.3989/scimar.04852.14A

Palabras clave:

distribución, impacto pesca, margen continental, mar profundo, megafauna, gamba roja, comunidad

Resumen


En este estudio se describe la estructura y patrones de distribución de la comunidad de megafauna que habita en el margen continental medio a lo largo del Mediterráneo. El estudio se realizó entre los 500 y 800 m, coincidiendo espacialmente con las pesquerías de profundidad. A pesar de que se conoce parcialmente la estructura de las comunidades que habitan por debajo de 500 m, existe la necesidad de estudiar estas comunidades a una escala espacial más amplia. Dentro del marco del proyecto internacional MEDITS, se comparó la estructura de las comunidades en diez sub-áreas geográficas (GSAs) a lo largo de las costas mediterráneas. Además se analizó la distribución espacial del esfuerzo pesquero utilizando la información de los datos de seguimiento de buques. En general los resultados mostraron diferencias significativas entre subáreas mostrando un patrón decreciente en los valores de biomasa hacia el este, siendo la longitud el principal factor explicativo del modelo de distribución (GAMs). Sin embargo, encontramos una subárea que no seguía el patrón general, la GSA6 (norte de España). La GSA6 mostró una biomasa y estructura de la comunidad diferente a las áreas adyacentes. La disminución de la biomasa en esta área parece ser un síntoma de los cambios poblaciones causados por la elevada intensidad de pesca en la zona. Los resultados sugieren que la distribución y estructura de las comunidades bento-pelágicas parecen estar moduladas por la combinación de las variables ambientales y los impactos producidos por la actividad humana.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allen R.M., Metaxas A., Snelgrove P.V. 2018. Applying movement ecology to marine animals with complex life cycles. Annu. Rev. Mar. Sci. 10: 19-42. https://doi.org/10.1146/annurev-marine-121916-063134 PMid:28813201

Azov Y. 1991. Eastern Mediterranean a marine desert? Mar. Pollut. Bull. 23: 225-232. https://doi.org/10.1016/0025-326X(91)90679-M

Beauchard O., Veríssimo H., Queirós A.M., et al. 2017. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indicators 76: 81-96. https://doi.org/10.1016/j.ecolind.2017.01.011

Béranger K., Mortier L., Crépon M. 2005. Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation. Prog. Oceanogr. 66: 341-364. https://doi.org/10.1016/j.pocean.2004.07.013

Bertrand J., Leonori I., Dremière P.Y., et al. 2002a. Depth trajectory and performance of a trawl used for an international bottom trawl survey in the Mediterranean. Sci. Mar. 66(Suppl. 2): 169-182. https://doi.org/10.3989/scimar.2002.66s2169

Bertrand J.A., Gil de Sola, L., Papaconstantinou C., et al. 2002b. The general specifications of the MEDITS surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29

Boletín Oficial del Estado (BOE). 1998. de 29 de Septiembre. Orden 22628 de 8 de Septiembre, n. 223, p. 32541.

Burnham K.P., Anderson D.R. 2003. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media.

Canals M., Puig P., de Madron X.D., et al. 2006. Flushing submarine canyons. Nature 444: 354-357. https://doi.org/10.1038/nature05271 PMid:17108962

Canals M., Danovaro R., Heussner S., et al. 2009. Cascades in Mediterranean submarine grand canyons. Oceanography 22: 26-43. https://doi.org/10.5670/oceanog.2009.03

Cartes J., Abelló P., Lloris D., et al. 2002. Analysis of feeding guilds of fish and decapod crustaceans during the MEDITS-99 cruise along the Iberian Peninsula Mediterranean coasts. Sci. Mar. 66: 209-220. https://doi.org/10.3989/scimar.2002.66s2209

Cartes J., Maynou F., Sardà F., et al. 2004. The Mediterranean deep-sea ecosystems: an overview of their diversity, structure, functioning and anthropogenic impacts. In: The Mediterranean deep-sea ecosystems, Part I. WWF and IUCN (eds), pp. 9-38.

Cartes J., Maynou F., Fanelli E., et al. 2009. Long-term changes in the composition and diversity of deep-slope megabenthos and trophic webs off Catalonia (western Mediterranean): Are trends related to climatic oscillations? Prog. Oceanogr. 82: 32-46. https://doi.org/10.1016/j.pocean.2009.03.003

Cartes J.E., Schirone A., Barsanti M., et al. 2017. Recent reconstruction of deep-water macrofaunal communities recorded in Continental Margin sediments in the Balearic Basin. Deep-Sea Res. Part I 125: 52-64. https://doi.org/10.1016/j.dsr.2017.04.016

Clark M.R., Althaus F., Schlacher T.A., et al. 2016. The impacts of deep-sea fisheries on benthic communities: a review. ICES J. Mar. Sci. 73: i51-i69. https://doi.org/10.1093/icesjms/fsv123

Clarke K., Gorley R. 2006. PRIMER v6: User Manual/Tutorial, Plymouth.

Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5: e11842. https://doi.org/10.1371/journal.pone.0011842 PMid:20689844 PMCid:PMC2914016

Coll M., Piroddi C., Albouy C., et al. 2012. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Global Ecol. Biogeogr. 21: 465-480. https://doi.org/10.1111/j.1466-8238.2011.00697.x

Colloca F., Scarcella G., Libralato S. 2017. Recent Trends and Impacts of Fisheries Exploitation on Mediterranean Stocks and Ecosystems. Front. Mar. Sci. 4: 244. https://doi.org/10.3389/fmars.2017.00244

Company J.B., Maiorano P., Plaity W., et al. 2004. Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Sci. Mar. 68(Suppl. 3): 73-86. https://doi.org/10.3989/scimar.2004.68s373

D'Onghia G., Politou C.Y., Bozzano A., et al. 2004. Deep-water fish assemblages in the Mediterranean Sea. Sci. Mar. 68(Suppl. 3): 87-99. https://doi.org/10.3989/scimar.2004.68s387

Danovaro R., Company J.B., Corinaldesi C., et al. 2010. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE 5: e11832. https://doi.org/10.1371/journal.pone.0011832 PMid:20689848 PMCid:PMC2914020

Davies J.S., Stewart H.A., Narayanaswamy B.E., et al. 2015. Benthic Assemblages of the Anton Dohrn Seamount (NE Atlantic): Defining Deep-Sea Biotopes to Support Habitat Mapping and Management Efforts with a Focus on Vulnerable Marine Ecosystems. PLoS ONE 10: e0124815. https://doi.org/10.1371/journal.pone.0124815 PMid:25992572 PMCid:PMC4436255

de Juan S., Demestre M. 2012. A Trawl Disturbance Indicator to quantify large scale fishing impact on benthic ecosystems. Ecol. Indicators 18: 183-190. https://doi.org/10.1016/j.ecolind.2011.11.020

de Juan S., Lleonart J. 2010. A conceptual framework for the protection of vulnerable habitats impacted by fishing activities in the Mediterranean high seas. Ocean Coast. Manage. 53: 717-723. https://doi.org/10.1016/j.ocecoaman.2010.10.005

Eigaard O.R., Bastardie F., Breen M., et al. 2015. Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J. Mar. Sci. 73: i27-i43. https://doi.org/10.1093/icesjms/fsv099

Eigaard O.R., Bastardie F., Hintzen N.T., et al. 2017. The footprint of bottom trawling in European waters: distribution, intensity, and seabed integrity. ICES J. Mar. Sci. 74: 847-865. https://doi.org/10.1093/icesjms/fsw194

Fabri M.C., Pedel L., Beuck L., et al. 2014. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep- Sea Res. Part II 104: 184-207. https://doi.org/10.1016/j.dsr2.2013.06.016

Farriols M.T., Ordines F., Somerfield P.J., et al. 2017. Bottom trawl impacts on Mediterranean demersal fish diversity: Not so obvious or are we too late? Cont. Shelf Res. 137: 84-102. https://doi.org/10.1016/j.csr.2016.11.011

Farrugio H., Oliver P., Biagi F. 1993. An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci. Mar. 57: 105-119.

Fernandez-Arcaya U., Drazen J.C., Murua H., et al. 2016. Bathymetric gradients of fecundity and egg size in fishes: A Mediterranean case study. Deep-Sea Res. Part I 116: 106-117. https://doi.org/10.1016/j.dsr.2016.08.005

Fernandez-Arcaya U., Ramirez-Llodra E., Aguzzi J., et al. 2017. Ecological role of submarine canyons and need for canyon conservation: a review. Front. Mar. Sci. 4: 5. https://doi.org/10.3389/fmars.2017.00005

Follesa M.C., Porcu C., Gastoni A., et al. 2009. Community structure of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean). Mar. Ecol. 30s1: 188-199. https://doi.org/10.1111/j.1439-0485.2009.00323.x

Foveau A., Vaz S., Desroy N., et al. 2017. Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling. PLoS ONE 12: e0184486. https://doi.org/10.1371/journal.pone.0184486 PMid:28981504 PMCid:PMC5628812

Galil B. 2009. Taking stock: inventory of alien species in the Mediterranean Sea. Biol. Invasions 11: 359-372. https://doi.org/10.1007/s10530-008-9253-y

General Fisheries Commission for the Mediterranean (GFCM), SAC 2009. Criteria for the identification of sensitive habitats of relevance for the management of priority species. vol. 3 pp. 3, Málaga.

Gorelli G., Sardà F., Company J.B. 2016. Fishing Effort Increase and Resource Status of the Deep-Sea Red Shrimp Aristeus antennatus (Risso 1816) in the Northwest Mediterranean Sea Since the 1950s. Rev Fish. Sci-Aquac. 24: 192-202. https://doi.org/10.1080/23308249.2015.1119799

Gori A., Orejas C., Madurell T., et al. 2013. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10: 2049. https://doi.org/10.5194/bg-10-2049-2013

Granger V., Fromentin J.-M., Bez N., et al. 2015. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea. Prog. Oceanogr. 130: 65-74. https://doi.org/10.1016/j.pocean.2015.08.002

Guijarro B., Tserpes G., Moranta J., et al. 2011. Assessment of the deep water trawl fishery off the Balearic Islands (western Mediterranean): from single to multi-species approach. Hydrobiologia 670: 67-85. https://doi.org/10.1007/s10750-011-0670-z

Guijarro B., Ordines F., Massutí E. 2017. Improving the ecological efficiency of the bottom trawl fishery in the Western Mediterranean: It's about time! Mar. Policy 83: 204-214. https://doi.org/10.1016/j.marpol.2017.06.007

Hiddink J., Hutton T., Jennings S., et al. 2006. Predicting the effects of area closures and fishing effort restrictions on the production, biomass, and species richness of benthic invertebrate communities. ICES J. Mar. Sci. 63: 822-830. https://doi.org/10.1016/j.icesjms.2006.02.006

Jennings S., Kaiser M.J. 1998. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34: 201-352. https://doi.org/10.1016/S0065-2881(08)60212-6

Keller S., Bartolino V., Hidalgo M., et al. 2016. Large-scale spatio-temporal patterns of Mediterranean cephalopod diversity. PLoS ONE 11: e0146469. https://doi.org/10.1371/journal.pone.0146469 PMid:26760965 PMCid:PMC4712019

Lauria V., Garofalo G., Fiorentino F., et al. 2017. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea. Sci. Rep. 7: 8049. https://doi.org/10.1038/s41598-017-08386-z PMid:28808253 PMCid:PMC5556048

Levin L.A., Dayton P.K. 2009. Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol. 24: 606-617. https://doi.org/10.1016/j.tree.2009.04.012 PMid:19692143

Maldonado A., Comas M. 1992. Geology and geophysics of the Alboran Sea: An introduction. Geo-Mar. Lett. 12: 61-65. https://doi.org/10.1007/BF02084913

Margalef R. (ed.). 1985. Western Mediterranean. Pergamon Press, Oxford. 363 pp.

Massutí E., Reñones O. 2005. Demersal resource assemblages in the trawl fishing grounds off the Balearic Islands (western Mediterranean). Sci. Mar. 69: 167-181. https://doi.org/10.3989/scimar.2005.69n1167

Maynou F., Cartes J.E. 2012. Effects of trawling on fish and invertebrates from deep-sea coral facies of Isidella elongata in the western Mediterranean. J. Mar. Biol. Assoc. U.K. 92: 1501-1507. https://doi.org/10.1017/S0025315411001603

Mecho A., Billett D.S., Ramírez-Llodra E., et al. 2014. First records, rediscovery and compilation of deep-sea echinoderms in the middle and lower continental slope of the Mediterranean Sea. Sci. Mar. 78: 281-302. https://doi.org/10.3989/scimar.03983.30C

Mecho A., Fernandez-Arcaya U., Aguzzi J., et al. 2015. Reproductive biology of the seastar Ceramaster grenadensis from the deep north-western Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 95: 805-815. https://doi.org/10.1017/S0025315415000065

Merrett N.R., Haedrich R.L. 1997. Deep-sea demersal fish and fisheries. Chapman and Hall, London.

Millot C. 1999. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20: 423-442. https://doi.org/10.1016/S0924-7963(98)00078-5

Moranta J., Massutí E., Palmer M., et al. 2007. Geographic and bathymetric trends in abundance, biomass and body size of four grenadier fishes along the Iberian coast in the western Mediterranean. Prog. Oceanogr. 72: 63-83. https://doi.org/10.1016/j.pocean.2006.09.003

Moranta J., Quetglas A., Massutí E., et al. 2008. Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (western Mediterranean). J. Mar. Syst. 71: 346-366. https://doi.org/10.1016/j.jmarsys.2007.02.029

Mouillot D., Graham N.A.J., Villéger S., et al. 2013. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28: 167-177. https://doi.org/10.1016/j.tree.2012.10.004 PMid:23141923

Moutin T., Raimbault P. 2002. Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J. Mar. Syst. 33: 273-288. https://doi.org/10.1016/S0924-7963(02)00062-3

Navarro J., Coll M., Cardador L., et al. 2015. The relative roles of the environment, human activities and spatial factors in the spatial distribution of marine biodiversity in the Western Mediterranean Sea. Prog. Oceanogr. 131: 126-137. https://doi.org/10.1016/j.pocean.2014.12.004

Navarro J., Cardador L., Fernández Á.M., et al. 2016. Differences in the relative roles of environment, prey availability and human activity in the spatial distribution of two marine mesopredators living in highly exploited ecosystems. J. Biogeogr. 43: 440-450. https://doi.org/10.1111/jbi.12648

Norse E.A., Brooke S., Cheung W.W., et al. 2012. Sustainability of deep-sea fisheries. Mar. Policy 36: 307-320. https://doi.org/10.1016/j.marpol.2011.06.008

Pham C.K., Ramirez-Llodra E., Alt C.H., et al. 2014. Marine litter distribution and density in European seas, from the shelves to deep basins. PLoS ONE 9: e95839. https://doi.org/10.1371/journal.pone.0095839 PMid:24788771 PMCid:PMC4005782

Piroddi C., Coll M., Liquete C., et al. 2017. Historical changes of the Mediterranean Sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7: 44491. https://doi.org/10.1038/srep44491 PMid:28290518 PMCid:PMC5349533

Pitcher C.R., Ellis N., Jennings S., et al. 2017. Estimating the sustainability of towed fishing-gear impacts on seabed habitats: a simple quantitative risk assessment method applicable to data-limited fisheries. Methods Ecol. Evol. 8: 472-480. https://doi.org/10.1111/2041-210X.12705

Quetglas A., Merino G., González J., et al. 2017. Harvest strategies for an ecosystem approach to fisheries management in western Mediterranean demersal fisheries. Front. Mar. Sci. 4: 106. https://doi.org/10.3389/fmars.2017.00106

Ramírez-Amaro S., Ordines F., Terrasa B., et al. 2016. Demersal chondrichthyans in the western Mediterranean: assemblages and biological parameters of their main species. Mar. Freshw. Res. 67: 636-652. https://doi.org/10.1071/MF15093

Ramirez-Llodra E., Brandt A., Danovaro R., et al. 2010. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences 7: 2851-2899. https://doi.org/10.5194/bg-7-2851-2010

Ramirez-Llodra E., De Mol B., Company J.B., et al. 2013. Effects of natural and anthropogenic processes in the distribution of marine litter in the deep Mediterranean Sea. Prog. Oceanogr. 118: 273-287. https://doi.org/10.1016/j.pocean.2013.07.027

Relini G., Orsi Relini L. 1987. The decline of blue red shrimps stocks in the gulf of Genoa. Invest. Pesq. 51: 245-260.

Rey J., Gil de Sola L., Massutí E. 2005. Distribution and biology of the blackmouth catshark Galeus melastomus in the Alboran Sea (Southwestern Mediterranean). J. Northw. Atl. Fish. Sci. 35: 215-223. https://doi.org/10.2960/J.v35.m484

Rijnsdorp A.D., Bastardie F., Bolam S.G., et al. 2016. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES J. Mar. Sci. 73: i127-i138. https://doi.org/10.1093/icesjms/fsv207

Roberts C.M. 2002. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17: 242-245. https://doi.org/10.1016/S0169-5347(02)02492-8

Rowden A.A., Anderson O.F., Georgian S.E., et al. 2017. High- Resolution Habitat Suitability Models for the Conservation and Management of Vulnerable Marine Ecosystems on the Louisville Seamount Chain, South Pacific Ocean. Front. Mar. Sci. 4: 335. https://doi.org/10.3389/fmars.2017.00335

Sardà F., Demestre M. 1987. Estudio biológico de la gamba Aristeus antennatus (Risso, 1816) en el Mar Catalán (NE de España). Inv. Pesq. 51: 213-232.

Sardà F., Maynou F. 1998. Assessing perceptions: do Catalan fishermen catch more shrimp on Fridays? Fish. Res. 36: 149-157. https://doi.org/10.1016/S0165-7836(98)00102-7

Sardà F., D'Onghia G., Politou C.Y., et al. 2004a. Deep-sea distribution, biological and ecological aspects of Aristeus antennatus (Risso, 1816) in the western and central Mediterranean Sea. Sci. Mar. 68: 117-127. https://doi.org/10.3989/scimar.2004.68s3117

Sardà F., Calafat A., Flexas M.M., et al. 2004b. An introduction to Mediterranean deep-sea biology. Sci. Mar. 68: 7-38. https://doi.org/10.3989/scimar.2004.68s37

Spedicato M. T., Greco S., Lembo G., et al. 1995. Prime valutazioni sulla struttura dello stock di Aristeus antennatus (Risso, 1816) nel Tirreno Centro Meridionale. Biol. Mar. Medit. 2: 239-244.

Tecchio S., Ramírez-Llodra E., Sardà F. 2011a. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins. Sci. Mar. 75: 341-350. https://doi.org/10.3989/scimar.201175n2341

Tecchio S., Ramírez-Llodra E., Sardà F., et al. 2011b. Drivers of deep Mediterranean megabenthos communities along longitudinal and bathymetric gradients. Mar. Ecol. Prog. Ser. 439: 181-192. https://doi.org/10.3354/meps09333

Torres P., González M., Rey J., et al. 2001. Rose shrimp fishery's associated fauna in not exploited grounds on the Alboran Sea slope (Western Mediterranean Sea). Rapp. Comm. Int. Mer Médit. 36: 330.

Vielmini I., Perry A.L., Cornax M.J. 2017. Untying the Mediterranean Gordian Knot: A Twenty First Century Challenge for Fisheries Management. Front. Mar. Sci. 4: 195. https://doi.org/10.3389/fmars.2017.00195

Worm B., Barbier E.B., Beaumont N., et al. 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314: 787-790. https://doi.org/10.1126/science.1132294 PMid:17082450

Watson R.A., Morato T. 2013. Fishing down the deep: Accounting for within-species changes in depth of fishing. Fish. Res. 140: 63-65. https://doi.org/10.1016/j.fishres.2012.12.004

Wood S.N. 2006. On confidence intervals for generalized additive models based on penalized regression splines. Aust. New Zeal. J. Stat. 48: 445-464. https://doi.org/10.1111/j.1467-842X.2006.00450.x

Publicado

2019-12-30

Cómo citar

1.
Fernandez-Arcaya U, Bitetto I, Esteban A, Farriols MT, García-Ruiz C, Gil de Sola L, Guijarro B, Jadaud A, Kavadas S, Lembo G, Milisenda G, Maina I, Petovic S, Sion L, Vaz S, Massutí E. Distribución espacial a gran escala de la megafauna de aguas profundas en fondos arrastrables del Mediterráneo. Sci. mar. [Internet]. 30 de diciembre de 2019 [citado 13 de mayo de 2024];83(S1):175-87. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1794

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >>