Estudio comparativo de los recursos pesqueros de bonito listado Katsuwonus pelamis (Scombridae) de los océanos Atlántico Sur e Índico Oeste

Autores/as

DOI:

https://doi.org/10.3989/scimar.04804.22C

Palabras clave:

pesca oceánica, océanos inter-regionales, ENSO, teleconexiones, ORPs, listado

Resumen


El listado, Katsuwonus pelamis, habita los océanos tropicales y subtropicales del mundo, y contribuye substancialmente a la captura total de la flota atunera. Sus poblaciones son afectadas por la presión pesquera e influencia antrópica, impactando en el rendimiento económico e inversiones. El presente estudio analiza y compara series temporales de captura y captura por unidad de esfuerzo (CPUE) de las pesquerías de línea de mano y caña de Brasil, Sudáfrica y Maldivas. Se han realizado análisis regionales e inter-regionales para el periodo 1970-2014 a fin de investigar potenciales asociaciones entre estas pesquerías, condiciones climáticas y el fenómeno de la Oscilación del Sur - El Niño (ENSO), habiéndose empleado tests de correlación y herramientas de mapeo. Entre 2004 y 2011, las capturas sudafricanas de bonito listado correlacionan positivamente con las brasileñas, y negativamente con las maldivas. Las CPUEs de las pesquerías de Brasil y Maldivas demostraron una correlación positiva para el periodo 1982-1993. Las capturas anuales para todas las regiones resultaron fuertemente relacionadas con el Índice de Oscilación del Norte (NOI) (p < 0.001), un índice de ENSO. Este estudio refleja un esfuerzo para articular una evaluación de la pesquería de línea y caña del listado en el contexto de un clima cambiante, frente a lo cual las economías emergentes son las más vulnerables. Al poner en evidencia pautas de influencias comunes a estas pesquerías, se espera fomentar la cooperación internacional Sur-Sur para un manejo y comprensión de las dinámicas del recurso.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdallah P.R., Sumaila U. 2007. An historical account of Brazilian Public Policy on Fisheries Subsidies. Mar. Pol. 31: 444-450. https://doi.org/10.1016/j.marpol.2007.01.002

Adam M.S., Sibert J.R. 2002. Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fishery: analysis of tagging data from an advection-diffusion-reaction model. Aquat. Living Resour. 15: 13-23. https://doi.org/10.1016/S0990-7440(02)01155-5

Allison E.H., Perry A.L., Badjeck M-C., et al. 2009. Vulnerability of national economies to the impacts of climate change on fisheries. Fish. Fish. 10: 173-196. https://doi.org/10.1111/j.1467-2979.2008.00310.x

Andrade H.A. 2003. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the South-Western Atlantic. Fish. Oceanogr. 12: 10-18. https://doi.org/10.1046/j.1365-2419.2003.00220.x

Andrade H.A., Tozetto A.L., Santos J.A.T. 2005. The effect of environmental factors and of the fishermen strategy on the Skipjack tuna (Katsuwonus pelamis) CPUE in the Southwest Atlantic. Col. Vol. Sci. Pap. ICCAT 58: 350-358.

Andrade H.A., Pereira M.D., Mayer F.P. 2007. Alternative methods for calculating catch-per-unit-effort for skipjack tuna (Katsuwonus pelamis) caught in the Southwestern Atlantic Ocean. Braz. J. Aquat. Sci. Technol. 11: 63-66. https://doi.org/10.14210/bjast.v11n2.p63-66

Andrade H.A., Guimarães-Silva A.A., Batista C.H.O. 2015. Catch composition of the baitboat fishery in the Southwestern Atlantic. Col. Vol. Sci. Pap. ICCAT 71: 317-324.

Arrizabalaga H., Dufour F., Kell L., et al. 2014. Global habitat preferences of commercial valuable tuna. Deep Sea Res. Part II: Top. Stud. Oceanogr. 113: 102-112. https://doi.org/10.1016/j.dsr2.2014.07.001

Belhabib D., Mendy A., Subah Y. et al. 2016. Fisheries catch under-reporting in The Gambia, Liberia and Namibia, and the three Large Marine Ecosystems which they represent. Environ. Dev. 17: 157-174. https://doi.org/10.1016/j.envdev.2015.08.004

Blasiak R., Spijkers J., Tokunaga K., et al. 2017. Climate change and marine fisheries: developed countries top global index of vulnerability. PLoS ONE 12: e0179632. https://doi.org/10.1371/journal.pone.0179632

Campos E.J.D., Miller J.L., Müller T.J., et al. 1995. Physical Oceanography of the Southwest Atlantic Ocean. Oceanography 8: 87-91. https://doi.org/10.5670/oceanog.1995.03

Castello J.P., Habiaga R.P. 1989. The skipjack fishery in Southern Brazil. Col. Vol. Sci. Pap. ICCAT 30: 6-19.

Cushing D.H. 1975. Marine ecology and fisheries. Cambridge Univ. Press, Cambridge, 278 pp.

Dong B., Sutton R.T., Scaife A.A. 2006. Multidecadal modulation of El Ni-o-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett. 33: L08705. https://doi.org/10.1029/2006GL025766

Dueri S., Bopp L., Maury O. 2014. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Glob. Change Biol. 20: 742-753. https://doi.org/10.1111/gcb.12460

Fonteneau A. 1986. Eléments relatifs à l'Effort de Pêche exercé sur le Listao de l'Atlantique (Katsuwonus pelamis) et Calcul d'Indices d'Effort Spécifiques. In: Proceedings of the ICCAT conference on the international skipjack year program: 21-29 Jun 1983, Tenerife, Spain. ICCAT, Madrid, pp. 127-139.

Fonteneau A. 2003. A comparative overview of skipjack fisheries and stocks worldwide. In: Proceedings of the 16th Meeting of the Standing Committee on Tuna and Billfish, 9-16 July 2003. Mooloolaba, Australia. SPC, Noumea, 15 pp.

Gadgil S. 2003. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 31: 429-467. https://doi.org/10.1146/annurev.earth.31.100901.141251

Govinden R., Jauhary R., Filmalter J., et al. 2013. Movement behavior of skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tuna at anchored fish aggregating devices (FADs), in the Maldives, investigated by acoustic telemetry. Aquat. Living Resour. 26: 69-77. https://doi.org/10.1051/alr/2012022

Hafiz A., Anderson R.C. 1994. The Maldivian tuna fishery - an update. In: Proceedings of the 5th Expert Consultation on Indian Ocean Tunas: 4-8 Oct 1993, Malé, Seychelles. ITPT, Colombo, pp. 30-33.

International Commission for the Conservation of Atlantic Tunas (ICCAT). 2014a. Task II - Catch & Effort (T2CE). [Database on the Internet]: ICCAT. http://www.iccat.org/en/t2ce.asp

International Commission for the Conservation of Atlantic Tunas (ICCAT). 2014b. Report of the 2014 ICCAT East and West Atlantic Skipjack stock assessment meeting: 23 Jun - 1 Jul 2014, Dakar, Senegal. ICCAT, Madrid, 98 pp.

International Commission for the Conservation of Atlantic Tunas (ICCAT). 2017. Report of the 2017 Standing Committee on Research and Statistics (SCRS): 2-6 Oct 2017, Madrid, Spain. ICCAT, Madrid, 465 pp.

Indian Ocean Tuna Commission (IOTC). 2010. Declining catches of Skipjack in the Indian Ocean - Observations from the Maldives. Document from the 12th Meeting of the Working Party on Tropical Tunas (WPTT): 18-25 Oct 2010, Victoria, Seychelles. IOTC, Victoria, 2 pp.

Indian Ocean Tuna Commission (IOTC). 2015. Résumé de l'état des thons et des espèces apparentées sous mandat de la CTOI, ainsi que des espèces affectées par les pêcheries de la CTOI. [Sl.]: IOTC. http://www.iotc.org/fr/science/résumé-de-létat-des-stocks

Indian Ocean Tuna Commission (IOTC). 2016. IOTC-2016-DATASETS-CESurface. [Database on the Internet]: IOTC. http://iotc.org/documents/ce-purse-seine-and-bait-boat

Indian Ocean Tuna Commission (IOTC). 2017. Review of the statistical data and fishery trends for tropical tunas. Document from the 19th Meeting of the Working Party on Tropical Tunas (WPTT): 17-22 Oct 2017, Mahé, Seychelles. IOTC, Victoria, 47 pp.

International Seafood Sustainability Foundation (ISSF). 2018. Status of the world fisheries for tuna. ISSF Tech Rep 2018-02. International Seafood Sustainability Foundation, Washington, 101 pp.

Kahle D., Wickham H. 2013. Ggmap: Spatial Visualization with ggplot2. The R J. 5: 144-161. https://doi.org/10.32614/RJ-2013-014

Kumar P.S., Pillai G.N., Majusha U. 2014. El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean. SpringerPlus 3: 591. https://doi.org/10.1186/2193-1801-3-591

Koya K.P.S., Joshi K.K., Abdussamad E.M., et al. 2012. Fishery, biology and stock structure of skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758) exploited from Indian waters. Indian J. Fish. 59: 39-47.

Legendre P., Oksanen K., ter Braak C.J.F. 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2: 269-277. https://doi.org/10.1111/j.2041-210X.2010.00078.x

McIlroy D. 2015. Packaged for R by Ray Brownrigg, Thomas P Minka and transition to Plan 9 codebase by Roger Bivand. mapproj: Map Projections. R package version 1.2-4. https://CRAN.R-project.org/package=mapproj

Medley P.A.H., Ahusan M., Adam M.S. 2017. Bayesian CPUE Standardization Model for Maldives Pole and Line Skipjack Tuna 1970-2015. Document from the 19th Working Party on Tropical Tunas (WPTT). 17-22 Oct 2017, Mahé, Seychelles. IOTC, Victoria, 7 pp.

Ménard F., Fonteneau A., Gaertner D., et al. 2000. Exploitation of small tunas by a purse-seine fishery with fish aggregating devices and their feeding ecology in an eastern tropical Atlantic ecosystem. ICES J. Mar. Sci. 57: 525-530. https://doi.org/10.1006/jmsc.2000.0717

Meneses de Lima J.H. 2006. Padronização do índice de abundância e avaliação do estoque de bonito listrado, (Katsuwonus pelamis Linnaeus, 1758), do Atlântico Ocidental. Ph.D. thesis. São Carlos University, São Carlos, 214 pp.

Meneses de Lima J.H., Lin C.F., Menezes A.A.S. 2000. As pescarias brasileiras de bonito-listrado com vara e isca-viva, no Sudeste e Sul do Brasil, no perodo de 1980 a 1998. Bol. Téc. Cient. Tamandaré 8: 7-99.

Ministry of Fisheries and Agriculture (MoFA). 2013. Maldives National Report submitted to the Scientific Committee of the Indian Ocean Tuna Commission. Ministry of Fisheries and Agriculture, Malé, 15 pp.

Ministry of Planning, Human Resources and Environment (MPHRE). 2016. Statistical year book of Maldives 2016. Ministry of Planning, Human Resources and Environment, Malé, Republic of Maldives.

Nicholson S.E. 1997. An analysis of the ENSO signal in the Tropical Atlantic and Western Indian Oceans. Int. J. Climatol. 17: 345-375. https://doi.org/10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0.CO;2-3

Ormaza-González F.I., Mora-Cervetto A., Bermúdez-Martínez R.M. 2016. Relationship between tuna catch and variable frequency oceanographic conditions. Adv. Geosc. 42: 83-90. https://doi.org/10.5194/adgeo-42-83-2016

Popova E., Yool A., Byfield V., et al. 2016. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Glob. Change Biol. 22: 2038-2053. https://doi.org/10.1111/gcb.13247

Ricker W.E. 1954. Stock and recruitment. J. Fish. Res. Board Can. 11: 559-623. https://doi.org/10.1139/f54-039

Schwing F.B., Murphree T., Green P.M. 2002. The Northern Oscillation Index (NOI): a new climate index for the northeast Pacific. Prog Oceanogr. 53: 115-139. https://doi.org/10.1016/S0079-6611(02)00027-7

Shainee M., Leira B.J. 2011. On the cause of premature FAD loss in the Maldives. Fish. Res. 109: 42-53. https://doi.org/10.1016/j.fishres.2011.01.015

Wang X., Chen Y., Truesdell S., et al. 2014. The Large-Scale Deployment of Fish Aggregation Devices Alters Environmentally- Based Migratory Behavior of Skipjack Tuna in the Western Pacific Ocean. PLoS ONE 9: e98226. https://doi.org/10.1371/journal.pone.0098226

Yesaki M., Waheed A. 1992. Results of the tuna tagging programme conducted in the Maldives during 1990. Indo-Pacific Tuna Development and Management Programme. FAO-UNDP, 23 pp.

Publicado

2019-03-30

Cómo citar

1.
Dahlet LI, Downey-Breedt N, Arce G, Sauer WH, Gasalla MA. Estudio comparativo de los recursos pesqueros de bonito listado Katsuwonus pelamis (Scombridae) de los océanos Atlántico Sur e Índico Oeste. Sci. mar. [Internet]. 30 de marzo de 2019 [citado 22 de julio de 2024];83(1):19-30. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1786

Número

Sección

Artículos