Hacia unas pesquerías de arrastre mediterráneas más selectivas: ¿son los dispositivos de exclusión de juveniles herramientas eficaces para reducir las capturas de Talla de Referencia Mínima de Conservación (MCRS)?

Autores/as

  • Sergio Vitale Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0001-6063-4126
  • Giacomo Milisenda Stazione zoologica Anton Dohrn, Lungomare Cristoforo Colombo https://orcid.org/0000-0003-1334-9749
  • Michele Gristina Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0003-3639-7655
  • Pasquale Baiata Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona
  • Sara Bonanomi Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0002-2236-9015
  • Francesco Colloca Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona - Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università di Roma https://orcid.org/0000-0002-0574-2893
  • Vita Gancitano Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0001-9623-6621
  • Danilo Scannela Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0001-7886-0316
  • Fabio Fiorentino Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0002-6302-649X
  • Antonello Sala Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), unit of Ancona https://orcid.org/0000-0001-7066-1152

DOI:

https://doi.org/10.3989/scimar.04751.28A

Palabras clave:

rejillas separadoras, JTED, pesquerías de arrastre del Mediterráneo, Parapenaeus longirostris, Merluccius merluccius, selectividad del arraste, estrecho de Sicilia

Resumen


Las pesquerías de arrastre mediterráneas se caracterizan por una combinación crítica de un alto esfuerzo de pesca y un tamaño de captura por debajo de la talla legal para la mayoría de las especies comerciales. En este estudio, probamos el uso de rejillas separadoras instaladas en redes de arrastre de fondo para minimizar la captura de la gamba rosada (Parapenaeus longirostris; DPS) y la merluza (Merluccius merluccius; HKE). La captura obtenida con una red de arrastre tradicional se comparó con la obtenida con la misma red equipada con “Juveniles Trash Excluder Devices” (JTED) diseñados específicamente para cada caso durante un estudio experimental. Tres JTEDs diferentes se probaron: el primero (G1-SM40) se construyó con una res de 40 mm de malla cuadrada; el segundo (G2-ST20) y el tercero (G3-ST25) se fabricaron con barras verticales de acero separadas 20 y 25 mm, respectivamente. La probabilidad de retener DPS y HKE según clase de talla en redes de arrastre con y sin JTED se analizó utilizando Modelos Mixtos Aditivos Generalizados (GAMM). Usando G1-SM40, se consiguió una reducción de individuos de talla por debajo de la talla legal en el copo, de 60% y 40% para DPS y HKE respectivamente. Con respecto a HKE, utilizando G2-ST20 se observó una disminución en la captura del 34% de individuos de menos de 20 cm TL. Sin embargo, se registró una pérdida de fraccion comercializable de DPS usando G1-SM40 del –25% y usando G2-ST20 del 30%. Finalmente, el JTED G3-ST25 resultó eficaz para reducir la captura de especímenes de DPS y HKE de talla ilegal, pero se observó una mayor pérdida de fraccion comercializable que con los otros JTEDs. Aunque se necesitarían más ensayos de pesca para maximizar la eficiencia de las rejillas separadoras, los resultados obtenidos indicaron claramente que las rejillas pueden contribuir a reducir sustancialmente las capturas no deseadas de DPS y HKE de talla ilegal en las pesquerías de arrastre de fondo del Mediterráneo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aydın C., Tosuno_lu Z. 2011. Evaluation of sorting grids for deep water rose shrimp (Parapenaeus longirostris) in the Eastern Mediterranean demersal trawl fishery. J. Appl. Ichthyol. 28: 102-106. https://doi.org/10.1111/j.1439-0426.2011.01897.x

Aydın C., Tokaç A., Aydın _., et al. 2011. Species selectivity in the Eastern Mediterranean demersal trawl fishery using grids to reduce non-target species. J. Appl. Ichthyol. 27: 61-66. https://doi.org/10.1111/j.1439-0426.2010.01605.x

Bahamon N., Sardà F., Suuronen. P. 2007. Selectivity of flexible size-sorting grid in Mediterranean multispecies trawl fishery. Fish. Sci. 73: 1231-1240.

Bellido J., Santos M., Pennino M.G., et al. 2011. Fishery discards and bycatch: solutions for an ecosystem approach to fisheries management? Hydrobiologia 670: 317-333. https://doi.org/10.1007/s10750-011-0721-5

Br_i_ J., Herrmann B., De Carlo F., et al. 2015. Selective characteristics of a shark-excluding grid device in a Mediterranean trawl. Fish Res. 172: 352-360.

Br_i_ J., Herrmann B., Sala A. 2017. Can a square-mesh panel inserted in front of the cod end improve size and species selectivity in Mediterranean trawl fisheries? Can. J. Fish. Aquat. Sci. 75: 704-713.

Caddy J.F. 1990. Options for the regulation of Mediterranean demersal fisheries. Nat. Res. Model. 4: 427-475. https://doi.org/10.1111/j.1939-7445.1990.tb00219.x

Carpentieri P., Colloca F., Ardizzone G. 2008. Daily ration and feeding activity of juvenile hake in the central Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 88: 1493-1501. https://doi.org/10.1017/S0025315408001859

Colloca F., Cardinale M., Maynou F., et al. 2013. Rebuilding Medi- terranean fisheries: a new paradigm for ecological sustainabil- ity. Fish Fish. 14: 89-109. https://doi.org/10.1111/j.1467-2979.2011.00453.x

Colloca F., Garofalo G., Bitetto I., et al. 2015. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PloS ONE 10: e0119590. https://doi.org/10.1371/journal.pone.0119590 PMid:25785737 PMCid:PMC4364973

Colloca F., Scarcella G., Libralato S. 2017. Recent Trends and Impacts of Fisheries Exploitation on Mediterranean Stocks and Ecosystems. Front. Mar. Sci. 4: 244. https://doi.org/10.3389/fmars.2017.00244

Dereli H., Aydin C., Kebapçio_lu T., et al. 2016. Selectivity of commercial and experimental cod-ends for the demersal trawl fishery of the deep-water rose shrimp, Parapenaeus longirostris (Lucas, 1846), in the Aegean Sea. Crustaceana 89: 477-493. https://doi.org/10.1163/15685403-00003532

Di Lorenzo M., Sinerchia M., Colloca F. 2018. The North sector of the Strait of Sicily: a priority area for conservation in the Mediterranean Sea. Hydrobiologia 821: 235-253. https://doi.org/10.1007/s10750-017-3389-7

Fiorentini L., Sala A., Hansen K., et al. 2004. Comparison between model testing and full-scale trials of new trawl design for Italian bottom fisheries. Fish. Sci. 70: 349-359. https://doi.org/10.1111/j.1444-2906.2004.00813.x

Fiorentino F., Ben Hadj Hamida O., Ben Meriem S., et al. 2013. Synthesis of information on some demersal crustaceans relevant for fisheries target species in the south-central Mediterranean Sea. GCP/RER/010/ITA/MSM-TD-32, MedSudMed Tech. Doc. 32: 1-120.

Fryer R.J., Zuur A.F., Graham N. 2003. Using mixed models to combine smooth size selection and catch-comparison curves over hauls. Can. J. Fish. Aquat. Sci. 60: 448-459. https://doi.org/10.1139/f03-029

Holst R., Revill A.S. 2009. A simple statistical method for catch comparison studies. Fish. Res. 95: 254-259. https://doi.org/10.1016/j.fishres.2008.09.027

Kaykaç H., Tokaç A., Özbilgin H. 2009. Selectivity of commercial, larger mesh and square mesh trawl cod-ends for deep water rose shrimp Parapenaeus longirostris (Lucas, 1846) in the Aegean Sea. Sci. Mar. 73: 597-604. https://doi.org/10.3989/scimar.2009.73n3597

Lleonart J., Maynou F. 2003. Fish stock assessments in the Mediterranean: State of the art. Sci. Mar. 67: 37-49. https://doi.org/10.3989/scimar.2003.67s137

Lucchetti A., Punzo E., Virgili M. 2016. Flexible Turtle Excluder Device (TED): an effective tool for Mediterranean coastal multispecies bottom trawl fisheries. Aquat. Living. Resour. 29: 201. https://doi.org/10.1051/alr/2016016

Maiorano L., Bartolino V., Colloca F., et al. 2009. Systematic conservation planning in the Mediterranean: a flexible tool for the identification of no-take marine protected areas. ICES J. Mar. Sci. 66: 137-146. https://doi.org/10.1093/icesjms/fsn148

Massutí B.E., Ordines F., Guijarro B. 2009. Efficiency of flexible sorting grids to improve size selectivity of the bottom trawl in the Balearic Islands (western Mediterranean), with comparison to a change in mesh cod-end geometry. J. Appl. Ichthyol. 25: 153-161. https://doi.org/10.1111/j.1439-0426.2009.01225.x

Maynou F., Gil M.D.M., Vitale S., et al. 2018. Fishers' perceptions of the European Union discards ban: perspective from south European fisheries. Mar. Policy 89: 147-153. https://doi.org/10.1016/j.marpol.2017.12.019

Milisenda G., Vitale S., Massi D., et al. 2017. Spatio-temporal composition of discard associated with the deep water rose shrimp fisheries (Parapenaeus longirostris, Lucas 1846) in the southcentral Mediterranean Sea. Med. Mar. Sci. 18: 53-63. https://doi.org/10.12681/mms.1787

Morrissey M.T., Almonacid S. 2005. Rethinking technology transfer. J. Food Eng. 67: 135-145. https://doi.org/10.1016/j.jfoodeng.2004.05.057

Orsi Relini L., Zamboni A., Fiorentino F., et al. 1997. Vulnerabilità luce dipendente del nasello (Merluccius merluccius) giovanile. Biol. Mar. Medit. 4: 262-268.

Özvarol Y. 2016. Size selectivity of sorting grid for eight fish species in the Gulf of Antalya, North eastern Mediterranean Sea. Iran. J. Ichthyol. 3: 294-303.

Özvarol Y., Bolat Y. 2017. Bottom trawl size selectivity methods in the Turkey. Sci. Pap. Ser. Manag., Econ. Engin. Agr. Rural Develop. 17: 259-262.

Pinello D., Gee J., Accadia P., et al. 2018. Efficiency of shallowand deep-water trawling in the Mediterranean and its implications for discard reduction. Sci. Mar. 82S1: 97-106.

Ragonese S., Zagra M., Di Stefano L., et al. 2001. Effect of cod-end mesh size on the performance of the deep-water bottom trawl used in the red shrimp fishery in the Strait of Sicily (Mediterranean Sea). Hydrobiologia 449: 279-291. https://doi.org/10.1023/A:1017564530716

Revill A. 2012. Survival of discarded fish. A rapid review of studies on discard survival rates. DG MARE A2. Request For Services Commitment No. S12.615631. Available at: http://nsrac.org/wp-content/uploads/2012/08/EU-discardsurvival-short-study-version-001.pdf

Russo T., Parisi A., Garofalo G., et al. 2014. SMART: A Spatially Explicit Bio-Economic Model for Assessing and Managing Demersal Fisheries, with an Application to Italian Trawlers in the Strait of Sicily. PLoS ONE 9: e86222. https://doi.org/10.1371/journal.pone.0086222 PMid:24465971 PMCid:PMC3900514

Sala A., Lucchetti A., Perdichizzi A., et al. 2015. Is square-mesh better selective than larger mesh? A perspective on the management for Mediterranean trawl fisheries. Fish. Res. 161: 182-190. https://doi.org/10.1016/j.fishres.2014.07.011

Sala A., Herrmann B., De Carlo F., et al. 2016. Effect of Cod-end Circumference on the Size Selection of Square-Mesh Codends in Trawl Fisheries. PLoS ONE 11: e0160354. https://doi.org/10.1371/journal.pone.0160354 PMid:27472058 PMCid:PMC4966963

Santiago J.L., Ballesteros M.A., Chapela R., et al. 2015. Is Europe ready for a results-based approach to fisheries management? The voice of stakeholders. Mar. Policy 56: 86-97. https://doi.org/10.1016/j.marpol.2015.02.006

Sardà F., Bahamón N., Sardà-Palomera F., et al. 2005. Commercial testing of a sorting grid to reduce catches of juvenile hake (Merluccius merluccius) in the western Mediterranean demersal trawl fishery. Aquat. Living Resour. 18: 87-91. https://doi.org/10.1051/alr:2005010

Savenkoff C., Savard L., Morin B., et al. 2006. Main prey and predators of northern shrimp (Pandalus borealis) in the northern Gulf of St. Lawrence during the mid-1980s, mid-1990s, and early 2000s. Can. Tech. R. Fish. & Aqua. Sci. 2639:1-28.

Sola I., Maynou F. 2018. Assessment of the relative catch performance of hake, red mullet and striped red mullet in a modified trawl extension with T90 netting. Sci. Mar. 82S1: 19-26.

Stergiou K.I., Moutopoulos D.K., Armenis G. 2009. Perish legally and ecologically: the ineffectiveness of the minimum landing sizes in the Mediterranean Sea. Fish. Manag. Ecol.16: 368-375. https://doi.org/10.1111/j.1365-2400.2009.00672.x

Suuronen P., Sardà F. 2007. By-catch reduction techniques in European fisheries: traditional methods and potential innovations. In: Kennelly S.J. (ed.), By-catch Reduction in the World's Fisheries, Springer, Dordrecht, pp. 37-74. https://doi.org/10.1007/978-1-4020-6078-6_3

Tokac A., Herrmann B., Aydın C., et al. 2014. Predictive models and comparison of the selectivity of standard (T0) and turned mesh (T90) codends for three species in the Eastern Mediterranean. Fish. Res. 150: 76-88. https://doi.org/10.1016/j.fishres.2013.10.015

Tsagarakis, K., Carbonell A., Br_i_ J., et al. 2017. Old Info for a New Fisheries Policy: Discard Ratios and Lengths at Discarding in EU Mediterranean Bottom Trawl Fisheries. Front. Mar. Sci. 4: 99.

Tsagarakis K., Nikolioudakis N., Papandroulakis N., et al. 2018. Preliminary assessment of discards survival in a multi-species Mediterranean bottom trawl fishery. J. Appl. Ichthyol. 34: 842-849. https://doi.org/10.1111/jai.13691

Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210

Veiga V., Pita C., Rangel M. et al. 2016. The EU landing obligation and European small-scale fisheries: What are the odds for success? Mar. Pol. 64: 64-71. https://doi.org/10.1016/j.marpol.2015.11.008

Vitale S., Enea M., Milisenda G., et al. 2018. Modelling the effects of more selective trawl nets on the productivity of European hake (Merluccius merluccius) and deep-water rose shrimp (Parapenaeus longirostris) stocks in the Strait of Sicily. Sci. Mar. 82S1: 199-208.

Wood S.N. 2006. Generalized additive models: an introduction with R. Chapman & Hall, Boca Raton, Florida, U.S.A., 416 pp. https://doi.org/10.1201/9781420010404

Zuur A.F., Ieno E.N., Smith G.M. 2007. Analysing Ecological Data. Springer-Verlag, New York, 672 pp. https://doi.org/10.1007/978-0-387-45972-1 PMCid:PMC2039845

Publicado

2018-12-30

Cómo citar

1.
Vitale S, Milisenda G, Gristina M, Baiata P, Bonanomi S, Colloca F, Gancitano V, Scannela D, Fiorentino F, Sala A. Hacia unas pesquerías de arrastre mediterráneas más selectivas: ¿son los dispositivos de exclusión de juveniles herramientas eficaces para reducir las capturas de Talla de Referencia Mínima de Conservación (MCRS)?. Sci. mar. [Internet]. 30 de diciembre de 2018 [citado 18 de mayo de 2024];82(S1):215-23. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1779

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 > >>