Vulnerabilidad de las especies accesorias y su potencial de supervivencia en la pesquería de arrastre de fondo de crustáceos en el Algarve (sur de Portugal)

Autores/as

DOI:

https://doi.org/10.3989/scimar.04740.02A

Palabras clave:

capturas accesorias, descartes, tiempo-para-mortalidad, características biológicas, supervivencia, arrastre, sur de Portugal

Resumen


El arrastre de fondo en las aguas costeras portuguesas es una pesquería de gran importancia económica, a pesar de sus efectos negativos sobre los ecosistemas marinos. Esta pesquería captura grandes cantidades de especies no deseadas que antes de la norma de desembarque eran descartadas por diversas razones. Después de la entrada en vigor de dicha norma, el descarte de especies reguladas está prohibido. Sin embargo, existen excepciones si se demuestra que una especie tiene grandes probabilidades de supervivencia después de su descarte. En este estudio, se utilizó un índice tiempo-para-mortalidad para estimar las tasas de mortalidad inmediata e identificar las características biológicas importantes que determinan la vulnerabilidad de 14 especies descartadas, la mayoría con interés comercial (Conger conger, Galeus melastomus, Helicolenus dactylopterus, Lepidorhombus boscii, Lophius budegassa, Lophius piscatorius, Merluccius merluccius, Micromesistius poutassou, Mullus surmuletus, Phycis blennoides, Scyliorhinus canicula, Trigla lyra, Trachurus trachurus y Trachurus picturatus). Además, se realizó un estudio de supervivencia a corto plazo para el congrio (Conger conger). Mediante el índice se determinó las especies con mayor probabilidad de sobrevivir. Los resultados sugieren que las especies con escamas, vejiga natatoria y elevada tasa metabólica tienen una mayor mortalidad post-descarte. El tamaño del animal fue un factor determinante para algunas de las especies estudiadas, observándose una mayor mortalidad en los individuos de menor tamaño. La supervivencia a corto plazo del congrio fue del 84% (95% intervalo de confianza: 75.5 a 93.3%). La metodología y los resultados de este estudio pueden ayudar a identificar las especies con mayor probabilidad de supervivencia al proceso de descarte y factores que influyen en su supervivencia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Benoît H.P., Hurlbut T., Chassé J. 2010. Assessing the factors influencing discard mortality of demersal fishes using a semi-quantitative indicator of survival potential. Fish. Res. 106: 436-447. https://doi.org/10.1016/j.fishres.2010.09.018

Benoît H.P., Plante S., Kroiz M., et al. 2013. A comparative analysis of marine fish susceptibilities to discard mortality: effects of environmental factors, individual traits, and phylogeny. ICES J. Mar. Sci. 70: 99-113. https://doi.org/10.1093/icesjms/fss132

Borges T.C., Erzini K., Bentes L., et al. 2001. By-catch and discarding practices in five Algarve (southern Portugal) métiers. J. Appl. Ichtyol. 17: 104-114. https://doi.org/10.1046/j.1439-0426.2001.00283.x

Breen M. 2004. Investigating the mortality of fish escaping from towed fishing gears – a critical analysis. PhD thesis, Univ. Aberdeen, 332 pp.

Breen M., Cook R. 2002. Inclusion of discard and escape mortality estimates in stock assessment models and its likely impact on fisheries management. ICES CM 2002/V: 27, 15 pp.

Breen M., Catchpole. T. (eds) In press. ICES WKMEDS Guidance on Method for Estimating Discard Survival. ICES Coop. Res. Rep.

Broadhurst M.K., Suuronen P., Hulme A. 2006. Estimating collateral mortality from towed fishing gear. Fish Fish. 7: 180-218. https://doi.org/10.1111/j.1467-2979.2006.00213.x

Campos A., Fonseca P., Pilar-Fonseca T., et al. 2015. Survival of trawl-caught Norway lobster (Nephrops norvegicus L.) after capture and release – Potential effect of codend mesh type on survival. Fish. Res. 172: 415-422. https://doi.org/10.1016/j.fishres.2015.07.038

Carlson J.K., Goldman K.J., Lowe C.G. 2004. Metabolism, energetic demand and endothermy. In: Carrier J.C., Musick J.A., Heithaus M.R. (eds), Biology of sharks and their relatives. CRC Press, New York, pp. 203-219. https://doi.org/10.1201/9780203491317.ch7

Castro M., Araújo A., Monteiro P., et al. 2003. The efficacy of releasing caught Nephrops as a management measure. Fish. Res. 65: 475-484. https://doi.org/10.1016/j.fishres.2003.09.033

Castro M., Araújo A., Monteiro P. 2005. Fate of discards from deep water crustacean trawl fishery off the south coast of Portugal. N. Z. J. Mar. Fresh. Res. 39: 437-446. https://doi.org/10.1080/00288330.2005.9517323

Catchpole T., Randall P., Forster R., et al. 2015. Estimating the discard survival rates of selected commercial fish species (plaice - Pleuronectes platessa) in four English fisheries (MF1234), Cefas Rep., London, 108 pp.

Clark M.R., Althaus F., Schlacher T.A., et al. 2015. The impacts of deep-sea fisheries on benthic communities: a review. ICES J. Mar. Sci. 73: 51-69. https://doi.org/10.1093/icesjms/fsv123

Clarke A., Johnston N.M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68: 893-905. https://doi.org/10.1046/j.1365-2656.1999.00337.x

Costa M.E., Erzini K., Borges T.C. 2008. Bycatch of crustacean and fish bottom trawl fisheries from southern Portugal (Algarve). Sci. Mar. 72: 801-814.

Cowles D.L., Childress J.J. 1995. Aerobic metabolism of the anglerfish Melanocetus johnsoni, a deep-pelagic marine sit-and-wait predator. Deep-Sea Res. 42: 1631-1638. https://doi.org/10.1016/0967-0637(95)00061-A

Davis M.W. 2002. Key principles for understanding fish bycatch discard mortality. Can. J. Fish. Aquat. Sci. 59: 1834-1843. https://doi.org/10.1139/f02-139

Davis M.W. 2005. Behaviour impairment in captured and released sablefish: ecological consequences and possible substitute measures for delayed discard mortality. J. Fish Biol. 66: 254-265. https://doi.org/10.1111/j.0022-1112.2005.00602.x

Davis M.W. 2007. Simulated fishing experiments for predicting delayed mortality rates using reflex impairment in restrained fish. ICES J. Mar. Sci. 64: 1535-1542. https://doi.org/10.1093/icesjms/fsm087

Davis M.W. 2010. Fish stress and mortality can be predicted using reflex impairment. Fish Fish. 11: 1-11. https://doi.org/10.1111/j.1467-2979.2009.00331.x

Davis M.W., Ottmar M.L. 2006. Wounding and reflex impairment may be predictors for mortality in discarded or escaped fish. Fish. Res. 82: 1-6. https://doi.org/10.1016/j.fishres.2006.09.004

Depestele J., Desender M., Benoît H.P., et al. 2014. Short-term survival of discarded target fish and non-target invertebrate species in the "eurocutter" beam trawl fishery of the southern North Sea. Fish. Res. 154: 82-92. https://doi.org/10.1016/j.fishres.2014.01.018

Diário da República. 2000. Portaria nº 1102-E/2000 de 22 de Novembro https://www.marinha.pt/conteudos_externos/lexmar/PGPAT%20100/PGPAT%201000%20-%20 Cap%C3%ADtulos/Cap%C3%ADtulo%20B%20Pesca/ Sub-cap%C3%ADtulo%20B.3/Portaria%201102-C-2000%20 (22NOV2000).pdf

Erzini K., Costa M.E., Bentes L., et al. 2002. A comparative study of the species composition of discards from five fisheries from the Algarve (southern Portugal). Fish. Manage. Ecol. 9: 31-40. https://doi.org/10.1046/j.1365-2400.2002.00284.x

European Union (EU). 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2004 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC. Off. J. Europ. Union L 354/22.

European Union (EU). 2015. Commission Delegated Regulation (EU) 2015/2439 of 12 October 2015 establishing a discard plan for certain demersal fisheries in south-western waters. Off. J. Europ. Union L 336/36.

Gingerich A.J., Cooke S.J., Hanson K.C., et al. 2007. Evaluation of the interactive effects of air exposure duration and water temperature on the condition and survival of angled and released fish. Fish. Res. 86: 169-178. https://doi.org/10.1016/j.fishres.2007.06.002

Helfman G.S., Collete B.B., Facey D.E., et al. 2009. The diversity of fishes – Biology, evolution and ecology. Second edition. Wiley- Blackwell, West Sussex. PMCid:PMC2695095

Hill B.J., Wassenberg T.J. 2000. The probable fate of discards from prawn trawlers fishing near coral reefs – A study in the northern Great Barrier Reef, Australia. Fish. Res. 48: 277-286. https://doi.org/10.1016/S0165-7836(00)00185-5

Huse I., Vold A. 2010. Mortality of mackerel (Scomber scombrus L.) after pursing and slipping from a purse seine. Fish. Res. 106: 54-59. https://doi.org/10.1016/j.fishres.2010.07.001

ICES. 2014. Report of the Workshop on Methods for Estimating Discard Survival (WKMEDS), 17-21 February 2014, ICES HQ, Copenhagen, Denmark. ICES CM 2014/ACOM:51, 114 pp.

Jacobsen J.A., Jákupsstovu S.H., Poulsen M., et al. 2002. Does the seasonal variation in fat content of blue whiting affect the acoustic conversion factor (TS)? ICES CM 2002/O:15, Theme session O, 8 pp.

Kelleher K. 2005. Discards in the world's marine fisheries. An update. FAO Fish. Tech. Pap. 470, Rome, 131 pp.

Laptikhovsky V.V. 2004. Survival rates for rays discarded by the bottom trawl squid fishery off the Falkland Islands. Fish. Bull. 102: 757-759.

Leitão F., Range P., Gaspar M.B. 2014. Survival estimates of bycatch individuals discarded from bivalve dredges. Braz. J. Oceanogr. 62: 257-263. https://doi.org/10.1590/s1679-87592014067006204

Marçalo A., Pousão-Ferreira P., Mateus L., et al. 2008. Sardine early survival, physical condition and stress after introduction to captivity. J. Fish Biol. 72: 103-120. https://doi.org/10.1111/j.1095-8649.2007.01660.x

Monteiro P., Araújo A., Erzini K., et al. 2001. Discards of the Algarve (southern Portugal) crustacean trawl fishery. Hydrobiologia 449: 267-277. https://doi.org/10.1023/A:1017575429808

Nichol D.G., Chilton E.A. 2006. Recuperation and behaviour of Pacific cod after barotrauma. ICES J. Mar. Sci. 63: 83-94. https://doi.org/10.1016/j.icesjms.2005.05.021

Pusceddu A., Bianchelli S., Martín J., et al. 2014. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. PNAS 111: 8861-8866. https://doi.org/10.1073/pnas.1405454111 PMid:24843122 PMCid:PMC4066481

Revill A.S., Dulvy N.K., Holst R. 2005. The survival of discarded lesser-spotted dogfish (Scyliorhinus canicula) in the Western English Channel beam trawl fishery. Short communication. Fish. Res. 71: 121-124. https://doi.org/10.1016/j.fishres.2004.07.006

Rodríguez-Cabello C., Fernández A., Olaso I., et al. 2005. Survival of small-spotted catshark (Scyliorhinus canicula) discarded by trawlers in the Cantabrian Sea. J. Mar. Biol. Ass. U.K. 85: 1145-1150. https://doi.org/10.1017/S002531540501221X

Rummer J.L., Bennet W.A. 2005. Physiological effects of swim bladder overexpansion and catastrophic decompression on red snapper. Trans. Am. Fish. Soc. 134: 1457-1470. https://doi.org/10.1577/T04-235.1

Therneau T. 2016. A Package for Survival Analysis in S. version 2.39-5, https://CRAN.R-project.org/package=survival.

Uhlmann S.S., Broadhurst M.K. 2015. Mitigating unaccounted fishing mortality from gillnets and traps. Fish Fish. 16: 183-229. https://doi.org/10.1111/faf.12049

Yang T.–H, Lai N.C., Graham J.B., et al. 1992. Respiratory, blood and heart enzymatic adaptations of Sebastolobus alascanus (Scorpaenidae; Teleostei) to the oxygen minimum zone: a comparative study. Biol. Bull. 183: 490-499. https://doi.org/10.2307/1542026 PMid:29300502

Publicado

2018-12-30

Cómo citar

1.
Adão AC, Breen M, Eichert M, Borges TC. Vulnerabilidad de las especies accesorias y su potencial de supervivencia en la pesquería de arrastre de fondo de crustáceos en el Algarve (sur de Portugal). Sci. mar. [Internet]. 30 de diciembre de 2018 [citado 22 de julio de 2024];82(S1):141-9. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1773

Número

Sección

Artículos