Modelos lineales generalizados bayesianos para la estandardización de CPUE: aplicación a la pesquería de calamar mediante jigging en el Pacífico noroccidental

Autores/as

  • Jie Cao College of Marine Sciences, Shanghai Ocean University
  • Xinjun Chen College of Marine Sciences, Shanghai Ocean University - The Key Laboratory of Shanghai Education Commission for Oceanic Fisheries Resources Exploitation - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education
  • Yong Chen School of Marine Sciences, University of Maine - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education
  • Bilin Liu College of Marine Sciences, Shanghai Ocean University - The Key Laboratory of Shanghai Education Commission for Oceanic Fisheries Resources Exploitation - The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education
  • Jin Ma College of Marine Sciences, Shanghai Ocean University
  • Siliang Li College of Marine Sciences, Shanghai Ocean University

DOI:

https://doi.org/10.3989/scimar.2011.75n4679

Palabras clave:

modelos lineales generalizados bayesianos, estandardización CPUE, Ommastrephes bartramii, pesquería china de calamar mediante jigging, Pacífico noroccidental

Resumen


Se desarrollan modelos lineales generalizados bayesianos (GLBM) jerárquicos y no-jerárquicos para la estandardización de captura por unidad de esfuerzo (CPUE). El modelo GLBM seleccionado para la pesquería del calamar Ommastrephes bartramii mediante jigging en el Pacífico noroccidental incorporó las variables explicativas mes, latitud, temperatura superficial del mar (SST), salinidad superficial del mar (SSS) y altura del nivel del mar (SLH). La selección del modelo se basó en el Criterio de Información de la Desviación (DIC). El modelo que mejor se ajustó a los datos tiene más sentido ecológico comparado con modelos de estandardización de CPUE basado en modelos lineales generalizados y modelos aditivos generalizados. Se utilizó también el GLBM para tratar el problema de la estimación de un índice de abundancia del stock (es decir, CPUE estandardizada) frente a la elevada heterogeneidad espacial en la dinámica del esfuerzo en la pesquería del calamar mediante la predicción de la CPUE estandardizada en áreas no pescadas. La CPUE estandardizada en base a los datos que incluyen la CPUE predicha en áreas no pescadas fue inferior a la CPUE derivada en base solamente a la CPUE observada, especialmente durante el pico de pesca de Agosto a Octubre. Este estudio muestra que es más apropiado usar la CPUE estandardizada derivada de datos que incluyen al mismo tiempo la CPUE predicha de las áreas no pescadas y la CPUE observada en el área pescada como índice de abundancia del stock. Se sugiere que se use el método propuesto para la estandardización de CPUE teniendo en cuenta la gran heterogeneidad espacial del esfuerzo pesquero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bellido, J.M., G.J. Pierce and J. Wang. – 2001. Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalized additive models. Fish. Res., 52(1): 23-29. http://dx.doi.org/10.1016/S0165-7836(01)00228-4

Bigelow, K.A., C.H. Boggs and X. He. – 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fish. Oceanogr., 8(3): 178-198. http://dx.doi.org/10.1046/j.1365-2419.1999.00105.x

Brooks, S. and A. Gelman. – 1997. General methods for monitoring convergence of iterative simulations. JCGS, 7: 434-455.

Campbell, R.A. – 2004. CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fish. Res., 70: 209-227. http://dx.doi.org/10.1016/j.fishres.2004.08.026

Campbell, R.A. and G. Tuck. – 1996. Spatial and temporal analyses of SBT fine-scale catch and effort data. Working Paper SBFWS/96/18 Presented at the Second CCSBT Scientific Meeting, Hobart, Australia, August 26-September 6 (1996). pp. 37.

Cao, J., X.J. Chen and Y. Chen. – 2009. Influence of surface oceanographic variability on abundance of the western winter-spring cohort of neon flying squid Ommastrephes bartramii in the NW Pacific Ocean. Mar. Ecol. Prog. Ser., 381: 119-127. http://dx.doi.org/10.3354/meps07969

Chen, X.J. – 1997. An analysis on marine environment factors of fishing ground of Ommastrephes bartramii in northwest Pacific. J. Shanghai Fish. Univ., 6: 285-287 (in Chinese).

Chen, X.J. – 1999. Study on the formation of fishing grounds of the large squid, Ommastrephes bartramii in the waters 160°E -170°E North Pacific Ocean. J. Shanghai Fish. Univ., 8: 197-201 (in Chinese).

Chen, X.J., Y. Chen, S.Q. Tian, B.L. Liu and W.G. Qian. – 2008. An assessment of the west winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Res., 92: 221-230. http://dx.doi.org/10.1016/j.fishres.2008.01.011

Chen, X.J. and S.Q. Tian. – 2005. Study on the catch distribution and relationship between fishing grounds and surface temperature for Ommastrephes bartramii in the northwestern Pacific Ocean. Periodical of Ocean University of China, 35: 101-107 (in Chinese).

Chen, X.J., L.X. Xu and S.Q. Tian. – 2003. Spatial and temporal analysis of Ommastrephes bartramii resources and its fishing ground in North Pacific Ocean. J. Fish. China., 27(4): 334-342. (in Chinese)

Chen, X.J., X.H. Zhao and Y. Chen. – 2007. El Niño/La Niña influence on the Western Winter-Spring Cohort of neon flying squid (Ommastrephes bartarmii) in the northwestern Pacific Ocean. ICES J. Mar. Sci., 64: 1152-1160.

Cowles, M.K. and B.P. Carlin. – 1996. Markov Chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91: 883-904. http://dx.doi.org/10.2307/2291683

Daniel, G. and D. Michel. – 2004. Analysis of non-linear relationships between catch per unit effort and abundance in a tuna purse-seine fishery simulated with artificial neural networks. ICES J. Mar. Sci., 61(5): 812-820. http://dx.doi.org/10.1016/j.icesjms.2004.05.002

Everitt, B.S. – 2002. The Cambridge Dictionary of Statistics. 2nd edition. Cambridge University Press, Cambridge, UK.

Gavaris, S. – 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci., 37(12): 2272-2275. http://dx.doi.org/10.1139/f80-273

Gelman, A. and D.B. Rubin. – 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7: 457-511. http://dx.doi.org/10.1214/ss/1177011136

Geweke, J. – 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: J.M. Bernardo, J. Berger, A.P. Dawid and A.F.M. Smith (eds.), Bayesian Statistics 4, pp.169-193. Oxford University Press, Oxford. Hastie, T.J. and R.J. Tibshirani. – 1990. Generalized Additive Models. Chapman and Hall, Washington, DC. 352 pp.

Hilborn, R. and C.J. Walters. – 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Chapman and Hall, New York. 570 pp.

Ichii, T. – 2003. Akaika (Red flying squid). In: The Current Status of International Fishery Stocks, pp. 304-308. Japan Fisheries Agency/Fisheries Research Agency, (in Japanese)

Ichii, T. and K. Mahapatra. – 2004. Stock assessment of the autumn cohort of neon flying squid (Ommastrephes bartramii) in the North Pacific based on the past driftnet fishery data. In: Report of the 2004 Meeting on Squid Resources, pp. 21-34. Japan Sea National Fisheries Research Institute, Niigata. (in Japanese).

Ichii, T., K. Mahapatra, M. Sakai and Y. Okada. – 2009. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Mar. Ecol. Prog. Ser., 378: 1-11. http://dx.doi.org/10.3354/meps07873

Maunder, M.N. and A.E. Punt. – 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res., 70: 141-159. http://dx.doi.org/10.1016/j.fishres.2004.08.002

McAllister, M.K. and G.P. Kirkwood. – 1998. Bayesian stock assessment: a review and example application using logistic model. ICES J. Mar. Sci., 55: 1031-1060. http://dx.doi.org/10.1006/jmsc.1998.0425

Mori, J. – 1997. Geographical differences between the parasites’ infection levels of the neon flying squid (Ommastrephes bartramii) from the North Pacific Ocean (Abstract). In: Report of the 1995 Meeting on Squid Resources, pp. 85-86. Contributions to the Fisheries Researches in the Japan Sea Block, N. 36. Japan Sea National Fisheries Research Institute, Niigata. (in Japanese)

Murata, M. and Y. Nakamura. – 1998. Seasonal migration and diel vertical migration of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: T. Okutani (ed.), Contributed Papers to the International Symposium on Large Pelagic Squids, pp.13-30. Japan Marine Fishery Resources Research Center. Tokyo.

Nagasawa, K., J. Mori and H. Okamura. – 1998a. Parasites as biological tags of stocks of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean. In: T. Okutani (ed.), Contributed Papers to International Symposium on Large Pelagic Squids, pp. 49-64. Japan Marine Fishery Resources Research Center, Tokyo.

Nagasawa, K., J. Mori and H. Okamura. – 1998b. Parasites as biological tags of stocks of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean. In: Report of the 1996 Meeting on Squid Resources, pp. 120. National Research Institute of Far Seas Fisheries, Shimizu.

Nelder, J.A. and R.W.M. Wedderburn. – 1972. Generalized linear models, J. R. Statist. Soc. A., 137: 370–384.

Ntzoufras, L. – 2009. Bayesian Modeling Using Winbugs. Wiley press. Hoboken, NJ.

Pinheiro, J.C. and D.M. Bates. – 2000. Mixed-Effects Models in S and S-plus. Springer, New York.

Quinn, T.J. and R.B. Deriso. – 1999. Quantitative fish dynamics. Oxford Univ. Press, New York.

Rodhouse, P.G. – 2001. Managing and forecasting squid fisheries in variable environments. Fish. Res., 54: 3-8. http://dx.doi.org/10.1016/S0165-7836(01)00370-8

Roper, C.F.E., M.J. Sweeney and C.E. Nauen. – 1984. FAO species catalogue. Vol 3: cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries. FAO Fish. Synop. 125, Rome.

Spiegelhalter, D., N. Best, B. Carlin and A. Van der Linde. – 2002. Bayesian measures of model complexity and fit (with discussion). J. Roy. Statist. Soc. B., 64: 583-639. http://dx.doi.org/10.1111/1467-9868.00353

Spiegelhalter, D., A.Thomas, N. Best and D. Lunn. – 2003. WinBUGS Version 1.4 user manual. MRC Biostatistics Unit, Cambridge.

Tian, S.Q., X.J. Chen, Y. Chen, L.X. Xu and X.J. Dai. – 2009. Standardizing CPUE of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Chin. J. Oceanol. Limnol., 27(4): 729-739. http://dx.doi.org/10.1007/s00343-009-9199-7

Wang, Y.G. and X.J. Chen. – 2005. Oceanic Ommastrephidae Squids and their Fisheries in the World. Ocean Press of China, Beijing. 124-155 pp. (in Chinese).

Walters, C.J. – 2003. Folly and fantasy in the analysis of spatial catch rate data. Can. J. Fish. Aquat. Sci., 60: 1433-1436. http://dx.doi.org/10.1139/f03-152

Yatsu, A., H. Tanaka and J. Mori. – 1998. Population structure of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: T. Okutani (ed.), Contributed Papers to International Symposium on Large Pelagic Squid, pp. 31-48. Japan Marine Fishery Resources Research Center, Tokyo.

Yatsu, A. and T. Watanabe. – 1996. Interannual variability in neon flying squid abundance and oceanographic conditions in the central North Pacific, 1982–1992. Bull. Natl. Res. Inst. Far Seas Fish., 33(3): 123-138.

Zhang, Z., J. Lessard and A. Campbell. – 2009. Use of Bayesian hierarchical models to estimate northern abalone, Haliotis kamtschatkana, growth parameters from tag- recapture data. Fish. Res., 95: 289-295. http://dx.doi.org/10.1016/j.fishres.2008.09.035

Descargas

Publicado

2011-12-30

Cómo citar

1.
Cao J, Chen X, Chen Y, Liu B, Ma J, Li S. Modelos lineales generalizados bayesianos para la estandardización de CPUE: aplicación a la pesquería de calamar mediante jigging en el Pacífico noroccidental. Sci. mar. [Internet]. 30 de diciembre de 2011 [citado 22 de julio de 2024];75(4):679-8. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1291

Número

Sección

Artículos

Artículos más leídos del mismo autor/a