Efecto del tipo de tejido sobre los cocientes ARN:ADN en larvas de peces marinos

Autores/as

  • M. Pilar Olivar Institut de Ciències del Mar - CSIC
  • Marina V. Diaz Instituto Nacional de Investigación y Desarrollo Pesquero
  • M. Alexandra Chícharo Centre of Marine Sciences, University of Algarve

DOI:

https://doi.org/10.3989/scimar.2009.73s1171

Palabras clave:

ARN, ADN, tejidos, inanición, condición, Sardina pilchardus, Engraulis encrasicolus, Atherina presbyter, Paralichthys orbignyanus

Resumen


En estudios de condición nutricional larvaria basados en la relación ARN:ADN, las cabezas y/o tubos digestivos suelen diseccionarse para posteriores estudios de edad o alimentación. además, durante la captura algunas larvas pierden los ojos. en este trabajo analizamos el efecto de diferentes tejidos (músculo, cabeza, ojos y tubo digestivo) sobre la relación ARN:ADN en Sardina pilchardus, Engraulis encrasicolus, Atherina presbyter y Paralichthys orbignyanus, en diferentes estadios de desarrollo y en diversas regiones. en todas las especies la relación ARN:ADN en la cabeza fue significativamente menor que para el músculo o el tubo digestivo. la comparación de la relación ARN:ADN de la cabeza con o sin ojos no mostró diferencias significativas. al comparar dos secciones de músculo de la cola en Sardina pilchardus y Engraulis encrasicolus se observó mayor ARN:ADN en la parte anterior que en la posterior. es necesaria precaución cuando se comparan ARN:ADN entre estudios que emplean diferentes protocolos de disección. Proponemos factores de conversión para ser aplicados a las relaciones ARN:ADN cuando se analizan diferentes secciones del cuerpo. Se discute cuales son los tejidos más apropiados para determinar la condición nutricional de larvas de peces, basados en las concentraciones de ácidos nucleicos y sus cocientes obtenidos en experimentos de inanición.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bailey, K.M., M.F. Canino, J.M. Napp, S.M. Spring and A.L. Brown.– 1995. Contrasting years of prey levels, feeding conditions and mortality of larval walleye pollock Theragra chalcogramma in the western Gulf of Alaska. Mar. Ecol. Prog. Ser., 119: 11-23. doi:10.3354/meps119011

Belchier, M., C. Clemmesen, D. Cortés, A. Doan, A. Folkvord, A. García, A.J. Geffen, H. Høie, A. Johannessen, E. Moksness, H. de Pontual, T. Rámirez, D. Schnack and B. Sveinsbø. – 2004. Recruitment studies: Manual of precision and accuracy of tools. ICES Techniques in Mar. Env. Sci., 33: 1-35.

Berdalet, E. and Q. Dortch. – 1991. New double staining technique from the measurement of RNA and DNA measurement in marine phytoplankton. Mar. Ecol. Prog. Ser., 73: 295-305. doi:10.3354/meps073295

Berdalet, E., C. Roldán, M.P. Olivar and K. Lysnes. – 2005. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Sci. Mar., 69(1): 1-16

Bergeron, J.P. – 1997. Nucleic acids in ichthyoplankton ecology: a review, with emphasis on recent advances for new perspectives. J. Fish. Biol., 51(A): 284-302.

Buckley, L.J. – 1984. RNA/DNA ratio: an index of larval fish growth in the sea. Mar. Biol., 80: 291-298. doi:10.1007/BF00392824

Buckley, L.J., E. Caldarone and T.L. Ong. – 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiology, 401: 265-277. doi:10.1023/A:1003798613241

Buckley, L.J., E.M. Caldarone and C. Clemmesen. – 2008. Multispecies larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: results from a metaanalysis. Mar. Ecol. Progr. Ser., 371: 221-232. doi:10.3354/meps07648

Bulow, F.J. – 1970. RNA-DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Board Can., 27: 2343-2349.

Bulow, F.J. – 1971. Selection of suitable tissues for use in RNA/DNA ratio technique of assessing recent growth rate of a fish. Iowa State College J. Sci., 46: 71-78.

Bulow, F.J. – 1987. RNA-DNA ratios as indicators of growth in fish: A review. In: R.C. Summerfelt and E. Gordon (eds.), The age and growth of fish, pp. 45-64. The Iowa State University Press, Ames, Iowa.

Caldarone, E.M. – 2005. Estimating growth in haddock larvae Melanogrammus aeglefinus from RNA: DNA ratios and water temperature. Mar. Ecol. Prog. Ser., 293: 241-252. doi:10.3354/meps293241

Caldarone, E.M. and L.J. Buckley. – 1991. Quantification of DNA and RNA in crude tissues extracts by flow injection analysis. Anal. Biochem., 199: 137-141. doi:10.1016/0003-2697(91)90281-W PMid:1725474

Caldarone, E.M., M. Wagner, J. St. Onge-Burns and L.J. Buckley. –2001. Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. Northeast Fish. Sci.Cent. Ref. Doc. 01-11; 22 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.

Caldarone, E.M., C.M. Clemmesen, E. Berdalet, T.J. Miller, A. Folkvord, G. J. Holt, M.P. Olivar and I.M. Suthers. – 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods, 4: 153-163.

Catalán, I.A. and M.P. Olivar. – 2002. Quantification of muscle condition using digital image analysis in Dicentrarchus labrax larvae, and relationship with survival. J. Mar. Biol. Ass. U.K., 82(4): 649-654. doi:10.1017/S002531540200601X

Catalán, I.A., E. Berdalet, M.P. Olivar and C. Roldán. – 2007. Response of muscle-based biochemical condition indices to short-term variations in food availability in post-flexion reared sea bass (Dicentrarchus labrax L.) larvae. J. Fish Biol., 70(2): 391-405. doi:10.1111/j.1095-8649.2007.01307.x

Chícharo, M.A., L.M. Chícharo, L. Valdez, E. Lopez-Jamar and P. Re. – 1998. Estimation of starvation and diel variation of the RNA/DNA ratios in field-caught Sardina pilchardus larvae off the north of Spain. Mar. Ecol. Prog. Ser., 164: 273-283. doi:10.3354/meps164273

Chícharo, M.A., A. Amaral, P. Morais and L. Chícharo. – 2007. Effect of sex on ratios and concentrations of DNA and RNA in three marine species. Mar. Ecol. Prog. Ser., 332: 241-245. doi:10.3354/meps332241

Clemmesen, C. – 1994. The effect of food availability, age or size on the RNA/DNA ratio of individually measured herring larvae: laboratory calibration. Mar. Biol., 118: 377-382. doi:10.1007/BF00350294

Dahlhoff, E.P. – 2004. Biochemical indicators of stress and metabolism: Applications for Marine Ecological Studies. Annu. Rev. Physiol., 66: 183-207. doi:10.1146/annurev.physiol.66.032102.114509 PMid:14977401

Ferron, A. and W.C. Leggett. – 1994. An appraisal of condition measures for marine fish larvae. Adv. Mar. Biol., 30: 217-303. doi:10.1016/S0065-2881(08)60064-4

Folkvord, A., L. Ystanes and E. Moksness. – 1996. RNA:DNA ratios and growth of herring (Clupea harengus) larvae reared in mesocosms. Mar. Biol., 126: 591-602. doi:10.1007/BF00351326

Fonseca, V.F., C. Vinagre and H.N. Cabral. – 2006. Growth variability of juvenile soles Solea solea and Solea senegalensis, and comparison with RNA:DNA ratios in the Tagus estuary, Portugal. J. Fish. Biol., 68: 1551-1562. doi:10.1111/j.0022-1112.2006.001042.x

Fukuda, M. – 1993. Changes in the glycogen content of Pacific herring, Clupea pallasi, during metamorphosis and the subsequent juvenile stage. Bull. Nansei Natl. Fish. Res. Inst., 26: 107-111.

Fukuda, M., H. Sako, T. Shigeta and R. Shibata. – 2001. Relationship between growth and biochemical indices in laboratory reared juvenile Japanese flounder and its application to wild fish. Mar. Biol., 138: 47-55. doi:10.1007/s002270000431

Goolish, E.M., M.G. Barron and I.R. Adelman. – 1984. Thermoacclimatory response of nucleic acid and protein content of carp muscle tissue: influence of growth rate and relationship to glycine uptake by scales. Can. J. Zool., 62: 2164-2170.

Goolish, E.M. and I.R. Adelman. – 1987. Tissue-specific cytochrome oxidase activity in largemouth bass: the metabolic costs of feeding and growth. Physiol. Zool., 69(4): 454-464.

Grémare, A. and G. Vétion. – 1994. Comparison of several spectrofluorimetric methods for measuring RNA and DNA concentrations in the deposit-feeding bivalve Abra ovata. Comp. Biochem. Physiol., 107B(2): 297-308.

Houlihan, D., D.N. McMillan and P. Laurent. – 1986. Growth rates, protein synthesis and protein degradation rates in rainbow trout: effects of body size. Physiol. Zool., 59: 482-493.

Houlihan, D. and P. Laurent. – 1987. Effects of exercise training on the performance, Growth and Protein Turnover of Rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci., 44: 1614-1621. doi:10.1139/f87-195

Ikeda, T., F. Sano, A. Yamaguchi and T. Matsuishi. – 2007. RNA:DNA ratios of calanoid copepods from the epipelagic through abyssopelagic zones of the North Pacific Ocean. Aquat. Biol., 1: 99-108. doi:10.3354/ab00011

Johnson, I.A. and T.E. Hall. – 2004. Mechanisms of Muscle Development and Responses to Temperature Change in Fish Larvae. Am. Fish. Soc. Symp., 40: 85-116.

Kawall H.G., J.J. Torres, B.D. Sidell and G.N. Somero. – 2002. Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain. Mar. Biol., 140: 279-86. doi:10.1007/s002270100695

Lewis, J.M. and W.R. Driedzic. – 2007. Tissue specific changes in protein synthesis associated with seasonal metabolic depression and recovery in the north temperate labrid, Tautogolabrus adspersus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 293(1): 474-481. doi:10.1152/ajpregu.00594.2006

Love R.M. – 1970. The chemical biology of fishes, Vol.1. Academic press, New York.

Lowery, M.S. and G.N. Somero. – 1990. Starvation effects on protein synthesis in red and white muscle of the barred sand bass Paralabras nebulifer. Physiol. Zool., 63: 630-648.

Luquet, P. – 1971. Etude du développement chez la truite. Evolution de la teneur en acides nucléiques dans diverses fractions corporelles. Ann. Biol. Anim. Biochim. Biophys., 11: 657-668. doi:10.1051/rnd:19710410

Malzahn, A.M., C. Clemmesen and H. Rosenthal. – 2003 Temperature effects on growth and nucleic acids in laboratory-reared larval coregonid fish. Mar. Ecol. Prog. Ser., 259: 285-293. doi:10.3354/meps259285

McNamara P.T., E.M. Caldarone and L.J. Buckley. – 1999. RNA/DNA ratio and expression of 18S ribosomal RNA, actin and myosin heavy chain messenger RNAs in starved and fed larval Atlantic cod (Gadus morhua). Mar. Biol., 135: 123-132. doi:10.1007/s002270050609

Mukherjee, S. and B.B. Jana. – 2007. Water quality affects SDH activity, protein content and RNA:DNA ratios in fish (Catla catla, Labeo rohita and Oreochromis mossambicus) raised in ponds of a sewage-fed fish farm. Aquaculture, 262: 105-119. doi:10.1016/j.aquaculture.2006.11.013

O’Connell, C.P. 1980.- Percentage of starving northern anchovy, Engraulis mordax, larvae in the sea estimated by histological methods Fish. Bull., 78(2): 475-489.

Ramírez, T., D. Cortés and A. García. – 2001 Growth of north Alboran Sea sardine larvae estimated by otolith microstructure, nucleic acids and protein content. J. Fish. Biol., 59: 403-415. doi:10.1111/j.1095-8649.2001.tb00139.x

Robinson, S.M.C. and D.M. Ware. – 1988. Ontogenetic development of growth rates of larval Pacific herring, Clupea harengus pallasi, measured with RNA-DNA ratios in the Strait of Georgia. British Columbia. Can. J. Fish. Aquat. Sci., 45: 1422-1429. doi:10.1139/f88-166

Rooker, J.R. and G.J. Holt. – 1996. Application of RNA:DNA ratios to evaluate the condition and growth of larval and juvenile red drum (Sciaenops ocellatus). Mar. Freshw. Res., 47: 283-290. doi:10.1071/MF9960283

Rosenlund, G., B. Lund, K. Sanders, O.R. Braekkan and A. von der Decaen. – 1984. Muscle protein synthesis in vitro (Pollachius virens) correlated to growth and daily energy intake. Comp. Biochem. Physiol., 77B: 7-13.

Smith, R.W., D.F. Houlihan, G.E. Nilsson and J.G. Brechin. – 1996. Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol., 271(4): 897-904.

Suthers, I.M., J.J. Cleary, S.C. Battaglene and R. Evans. – 1996. Relative RNA contents as a measure of condition in larval and juvenile fish. Mar. Freswater Res., 47: 301-307. doi:10.1071/MF9960301

Sykes, A., P. Domingues and J.P. Andrade. – 2004. Nucleic acid derived indices or instantaneous growth rate as tools to determine different nutritional condition in cuttlefish (Sepia officinalis, Linnaeus 1758) hatchlings. J. Shellfish Res., 23(2): 585-591.

Tanaka, Y., W.S. Gwak, M. Tanaka, Y. Sawada, T. Okada, S. Miyashita and H. Kumai. – 2007. Ontogenetic changes in RNA, DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis. Fish. Sci., 73: 378-384. doi:10.1111/j.1444-2906.2007.01345.x

Theilacker, G.H. – 1986. Starvation-induced mortality of young sea-caught jack mackerel, Trachurus symmetricus, determined with histological and morphological methods. Fish. Bull., 84: 1-17.

Yang T.H., and G.N.Somero. – 1993. Effects of feeding and food deprivation on oxygen consumption, muscle protein concentration, and activities of energy metabolism enzymes in muscle and brain of shallow- (Scorpaena guttata) and deep- (Sebastelobus alascanus) living Scorpaenid fishes. J. Exp. Biol., 181: 213-230.

Descargas

Publicado

2009-10-30

Cómo citar

1.
Pilar Olivar M, Diaz MV, Alexandra Chícharo M. Efecto del tipo de tejido sobre los cocientes ARN:ADN en larvas de peces marinos. Sci. mar. [Internet]. 30 de octubre de 2009 [citado 1 de mayo de 2025];73(S1):171-82. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1119

Número

Sección

Artículos