Utilización de índices bioquímicos para analizar el crecimiento en juveniles del gobio nadador (Gobiusculus flavescens) del mar Báltico

Autores/as

  • Andrea Frommel Leibniz-Institute for Marine Sciences IFM-GEOMAR
  • Catriona Clemmesen Leibniz-Institute for Marine Sciences IFM-GEOMAR

DOI:

https://doi.org/10.3989/scimar.2009.73s1159

Palabras clave:

Gobiusculus flavescens, juveniles, temperatura, crecimiento, ARN/ADN, indicadores bioquímicos

Resumen


Múltiples mediciones bioquímicas han sido evaluadas como una medida indirecta de crecimiento en juveniles de peces. se incubaron juveniles del gobio nadador, Gobiusculus flavescens (Fabricius) del fiordo de Kiel, en una mesa de gradiente de temperatura a 7 diferentes temperaturas en el rango de 9 a 22.7°C durante 28 días y se tomaron muestras semanales. se midieron las proporciones de RNA/DNA y las cantidades de proteínas y lípidos en homogenados de pez entero y se compararon con las tasas de crecimiento en peso calculadas para cada individuo. se demostró que proporciones de RNA/DNA no estaban correlacionadas de manera significativa con las tasas de crecimiento en peso. las tasas de crecimiento en lípidos y proteínas, por otro lado, estaban altamente correlacionadas con el crecimiento en peso (R2 de 0.4-0.5) y la tasa de crecimiento en lípidos explicaba el 45.8% de variabilidad del crecimiento en peso en un modelo linear de crecimiento. las tasas de crecimiento en peso mostraron una relación asintótica con la temperatura con un máximo cerca de 16°C, una tendencia reflejada en las tasas de crecimiento basadas en lípidos. Los resultados indican un cambio en almacenamiento de energía dependiente del estado de desarrollo y del metabolismo, con un desaclopamiento del RNA/DNA como un índice del crecimiento en peso a medida que los gobios juveniles se desarrollan, y los lípidos pasan a ser el principal determinante de crecimiento en peso de estos peces.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

BACC Author Team. – 2008. Assessment of climate change for the Baltic Sea Basin. Springer.

Barnes, H. and J. Blackstock. – 1973. Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanillin method for ‘total’ lipids. J. Exp. Mar. Biol. Ecol., 12: 103-118. doi:10.1016/0022-0981(73)90040-3

Baumann, H., R.Voss, H.H.Hinrichsen, C. Möllmann, F.W. Köster, A.M. Malzahn and A. Temming. – 2006. Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can. J. Fish. Aquat. Sci., 63: 2191-2201. doi:10.1139/F06-112

Belchier, M., C. Clemmesen, D. Cortes, T. Doan, A. Folkvord, A. Garcia, A. Geffen, H. Høie, A. Johannessen, E. Moksness, H. de Pontual, T. Ramirez, D. Schnack, and B. Sveinsbo. – 2004. Recruitment studies: manual on precision and accuracy of tools. ICES Tech. Mar. Environ. Sci., 33: 1-35.

Bergeron, J.P. – 1997. Nucleic acids in ichthyoplankton ecology: a review, with emphasis on recent advances for new perspectives. J. Fish Biol., 51: 284-302. doi:10.1111/j.1095-8649.1997.tb06104.x

Blake, B.F. – 1983. A comparative study of the diet of auks killed during an oil incident in the Skagerrak in January 1981. J. Zool., 201: 1-12. doi:10.1111/j.1469-7998.1983.tb04257.x

Bradford, M. – 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254. doi:10.1016/0003-2697(76)90527-3 PMid:942051

Buckley, L.J. – 1982. Effects of temperature on growth and biochemical composition of larval winter flounder (Pseudopleuronectes americanus). Mar. Ecol. Prog. Ser., 8: 181-186 doi:10.3354/meps008181

Buckley, L.J., S.I. Turner, T.A. Halavik, A.S. Smigielski, S.M. Drew and G.C. Laurence. – 1984. Effects of temperature and food availability on growth, survival, and RNA-DNA ratio of larval sand lance (Ammodytes americanus). Mar. Ecol. Prog. Ser., 15: 91-97. doi:10.3354/meps015091

Buckley, L.J., E. Caldarone and T.L. Ong. – 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia, 401: 265-277. doi:10.1023/A:1003798613241

Buckley, L.J., E. Caldarone, R.G. Lough and J.M. St. Onge-Burns.– 2006. Ontogenetic and seasonal trends in recent growth rates of Atlantic cod and haddock larvae on Georges Bank: effects of photoperiod and temperature. Mar. Ecol. Prog. Ser., 325: 205-226. doi:10.3354/meps325205

Buckley, L.J., E.M. Caldarone and C. Clemmesen. – 2008. Multispecies larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: results from a metaanalysis. Mar. Ecol. Prog. Ser., 371: 221-232. doi:10.3354/meps07648

Bulow, F.J. – 1970. RNA/DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Bd. Can., 27: 2343-2349.

Caldarone, E.M. – 2005. Estimating growth in haddock larvae Melanogrammus aeglefinus from RNA:DNA ratios and water temperature. Mar. Ecol. Prog. Ser., 293:241-252. doi:10.3354/meps293241

Caldarone, E.M., C.M. Clemmesen, E. Berdalet, T.J. Miller, A. Folkvord, G.J. Holt, M.P. Olivar and I.M. Suthers. – 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods, 4: 153-163.

Campana, S.E. – 1996. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser., 135: 21-26. doi:10.3354/meps135021

Campana, S.E., K.T. Frank, P.C.F. Hurley, P.A. Koeller, F.H. Page and P.C. Smith. – 1989. Year Survival and abundance of young Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) as indicators of year-class strength. Can. J. Fish. Aquatic Sci., 46: 171-182. doi:10.1139/f89-287

Carter, C.G., G.C. Seeto, A. Smart, S. Clarke and R.J. van Barneveld.– 1998. Correlates of growth in farmed juvenile southern bluefin tuna Thunnus maccoyii (Castelnau). Aquaculture, 161: 107-119 doi:10.1016/S0044-8486(97)00261-5

Carter, C.G. and D.F. Houlihan. – 2001. Protein synthesis. In: P. Wright and P. Anderson (eds.), Fish physiology, nitrogen excretion, vol. 20, pp. 31–75. Academic Press, New York. doi:10.1016/S1546-5098(01)20003-X

Clemmesen, C. – 1993. Improvements in the fluorimetric determination of the RNA and DNA content in individual marine fish larvae. Mar. Ecol. Prog. Ser., 100, 177-183. doi:10.3354/meps100177

Costello, M.J., J. Edwards and G.W. Potts. – 1990. The diet of the two-spot goby, Gobiusculus flavescens (Pisces). J. Mar. Biol. Ass. U.K., 70: 329-342. doi:10.1017/S002531540003544X

Ehrenberg, S.Z., S. Hansson and R. Elmgren. – 2005. Sublittoral abundance and food consumption of Baltic gobies. J. Fish Biol., 67: 1083-1093. doi:10.1111/j.0022-1112.2005.00811.x

Ferron, A. and W.C. Leggett . – 1994. An appraisal of condition measures for marine fish larvae. Adv. Mar. Biol., 30: 217-303. doi:10.1016/S0065-2881(08)60064-4

Folch, J., M. Lees and G.H. Sloane-Stanley. – 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226: 497-509.

Foster, A.R., .F. Houlihan and S.J. Hall. – 1993. Effects of nutrional regime on correlates of growth rate in juvenile Atlantic cod (Gadus morhua): comparisons of morphological and biochemical measurements. Can. J. Fish. Aquat. Sci., 50: 502-512 doi:10.1139/f93-059

Frommel, A.Y. – 2008. Influence of temperature on growth and biochemical-based indicators of growth in juvenile Gobiids of the Baltic Sea. Master thesis, Univ. Southern Denmark.

Groves, T.D.D. – 1970. Body composition changes during growth in young sockeye (Oncorhynchus nerka) in fresh water. In: A.H. Weatherly and H.S. Gill (eds). The Biology of Fish Growth, pp. 104-105. Academic Press, London.

Hjort, J. – 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp. Prov. Verb., 20: 1-288.

Hoar, W.S. and D.J. Randall . – 1969. Fish Physiology, Volume 1: Excretion, Ionic Regulation and Metabolism, pp. 398-414. Academic Press, New York.

Katersky, R.S. and C.G. Carter. – 2007. A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquaculture, 267: 157-164. doi:10.1016/j.aquaculture.2007.02.043

Keast, A., and J.M. Eadie. – 1985. Growth depensation in year-0 largemouth bass: the influence of diet. T. Am. Fish. Soc., 114: 204-213. doi:10.1577/1548-8659(1985)114<204:GDIYLB>2.0.CO;2

Kondratovics, E. – 1997. Distribution, feeding, and growth parameters of young cod in the eastern Baltic in 1970-1992. In: A. Andrushaitis (ed) Proceedings of the 13th Symposium of the Baltic Marine Biologists, pp. 197-203. Riga.

Kuropat, C., R. Mercaldo-Allen, E. Caldarone, R. Goldberg, B. Phelan and F. Thurnberg. – 2002. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautoga onitis. Mar. Ecol. Prog. Ser., 230: 265-274. doi:10.3354/meps230265

Le Pecq, J.B. and C. Paoletti. – 1966. A new fluorometric method for RNA and DNA determination. Anal. Biochem., 17: 100-107. doi:10.1016/0003-2697(66)90012-1 PMid:6008008

Lick, R.R. – 1991. Untersuchungen zu Lebenszyklus (Krebse-Fischemarine Saeuger) und Gefrierresistenz anisakider Nematoden in Nord- und Ostsee. Ber. Inst. Meereskd. CAU, Kiel 218.

Lissåker, M., C. Kvarnemo and O. Svensson. – 2003. Effects of a low oxygen environment on parental effort and filial cannibalism in the male sand goby, Pomatoschistus minutus. Behav. Ecol., 14: 374-381. doi:10.1093/beheco/14.3.374

Lohmeyer, U. and G. Hempel. – 1977. Winter food of the Baltic herring (Clupea harengus L.). Int. Counc. Explor. Sea C.M., 1977/P: 7, 13 p.

Malloy, K.D. and T.E. Targett. – 1994. The use of RNA:DNA ratios to predict growth limitation of juvenile summer flounder (Paralichtys dentatus) from Delaware and North Carolina estuaries. Mar. Biol., 118: 367-375. doi:10.1007/BF00350293

Mathers, E.M., D.F. Houlihan and M.J. Cunningham. – 1992. Nucleic acid concentrations and enzyme activities as correlates of growth rate of the saithe Pollachius virens: growth-rate estimates of open-sea fish. Mar. Biol., 112: 363-369. doi:10.1007/BF00356280

McCarthy, I.D., E. Moksness, D.A. Pavlov and D.F. Houlihan. –1999. Effects of water temperature on protein synthesis and protein growth in juvenile Atlantic wolfish (Anarhichas lupus). Can. J. Fish. Aquat. Sci., 56: 231-241. doi:10.1139/cjfas-56-2-231

McLaughlin, R.L., M.M. Ferguson M.M. and D.L.G. Noakes. – 1994. Tissue concentrations of RNA and protein for juvenile brook trout (Salvelinus fontinalis): lagged responses to fluctuations in food availability. Fish Physiol. Biochem., 14(6): 459-469. doi:10.1007/BF00004346

Oliver, J.D., G.F. Holeton and K.E. Chua. – 1979. Overwinter mortality of fingerling smallmouth bass in relation to size, relative energy stores, and environmental temperature. T. Am. Fish. Soc., 108: 130-136. doi:10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2

Peck, M.A., L.J. Buckley, E.M. Caldarone and D.A. Bengston. –2003. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser., 251: 233-243. doi:10.3354/meps251233

Petereit, C. – 2004. Experimente zum Temperatureinfluss auf fruehe Entwicklungsstadien des Ostseedorsches Gadus morhua. Diploma thesis, Univ. Kiel.

Pfeiler, E. And A. Luna. – 1984. Changes in biochemical composition and energy utilization during metamorphosis of leptocephalus larvae of the bonefish (Albula). Environ. Biol. Fish, 10: 243-251. doi:10.1007/BF00001477

Richard, P., J.P. Bergeron, M. Boulhic, R. Galois and J. Pearson-Le Ruyet. – 1991. Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Mar. Ecol. Prog. Ser., 72: 69-77. doi:10.3354/meps072069

Shepherd, J.G. and D.H. Cushing. – 1980. A mechanism for density-dependent survival of larval fish as the basis of a stockrecruitment relationship. Journal du Conseil, 39: 160-167.

Sole, M., J. Kopecka and L.M. García de la Parra. – 2006. Seasonal variations of selected biomarkers in sand gobies Pomatoschistus minutus from the Guadalquivir estuary, southwest Spain. Arch. Environ. Contam. Toxicol., 50: 249-255. doi:10.1007/s00244-004-0250-6 PMid:16328622

Thomas, W.H., H.L. Scotten and J.S. Bradshaw. – 1963. Thermal gradient incubators for small aquatic organisms. Limnol. Oceanogr., 8: 357-360.

Weber, L.P, P.S. Higgins, R.I. Carlson and D.M. Janz. – 2003. Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J. Fish Biol., 63: 637-658. doi:10.1046/j.1095-8649.2003.00178.x

Descargas

Publicado

2009-10-30

Cómo citar

1.
Frommel A, Clemmesen C. Utilización de índices bioquímicos para analizar el crecimiento en juveniles del gobio nadador (Gobiusculus flavescens) del mar Báltico. Sci. mar. [Internet]. 30 de octubre de 2009 [citado 23 de julio de 2024];73(S1):159-70. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1118

Número

Sección

Artículos