Efectos de la aclimatización al cortisol y a la salinidad en el Na+/K+/2Cl- cotransportador de expresión génica y en la actividad Na+, K+-ATPasa en las branquias de juveniles del Esturión de Persia

Autores/as

  • Saber Khodabandeh Marine biology Group, Faculty of Marine Science Tarbiat Modares University
  • Saeedeh Mosafer Marine biology Group, Faculty of Marine Science Tarbiat Modares University
  • Zahra Khoshnood Marine biology Group, Faculty of Marine Science Tarbiat Modares University

DOI:

https://doi.org/10.3989/scimar.2009.73s1111

Palabras clave:

cortisol, na<sup> </sup>, K<sup> </sup>-ATPasa, NKCC, esturión de Persia, salinidad

Resumen


Se estudió la actividad Na+, K+-ATPasa y el cotransportador de expresión génica (NKCC) Na+/K+/2Cl- en las branquias de juveniles de esturión de Persia, Acipenser persicus, (2-3 g, 3.30-8.12 cm de longitud total) en agua dulce (grupo control), agua diluida del mar Caspio (5 ppt) y posterior tratamiento con cortisol en agua dulce. La actividad Na+, K+-ATPasa fue menor en los peces aclimatados en 5 ppt (1.07±0.05 μmol Pi/mg proteína/h) que en los peces (1.19±0.05 μmol Pi/mg proteína/h), pero esta diferencia no fue significativa. La expresión génica NKCC en peces desde 5 ppt de salinidad (1.6±0.07) fue significativamente más alta que en el grupo (0.8±0.00). en los peces tratados con cortisol la actividad Na+, K+-ATPasa (1.91±0.05 μmol P Pi/mg proteína/h) y la expresión génica NKCC (3.2±0.1) incrementaron significativamente en comparación con el grupo control. nuestros resultados mostraron que los juveniles de esturión de Persia (2-3 g) pueden tolerar 5 ppt de salinidad y esta capacidad se consiguió cambiando su contenido y actividad enzimática; -la aplicación de cortisol exógeno puede incrementar la capacidad osmoregulatoria de los juveniles antes de soltarlos a aguas salobres y puede reducir su mortalidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bachmann, S.M. Bostanjoglo, R. Schmitt and D.H. Ellison. – 1999. Sodium transport-related proteins in the mammalian distal nephron distribution, ontogeny and functional aspects. Anatomy and Embryology, 200: 447-468. doi:10.1007/s004290050294 PMid:10526014

Bern, H.A. and S.S. Madsen. – 1992. A selective survey of the endocrine system of the rainbow trout (Oncorhynchus mykiss) with emphasis on the hormonal regulation of ion balance. Aquaculture, 100: 237–262. doi:10.1016/0044-8486(92)90384-W

Cutler, C.P. and G. Cramb. – 2002. Two isoforms of the Na+/K+/2Cl– cotransporter are expressed in the European eel (Anguilla anguilla). Bioch. Biophys. Acta, 1566: 92-103. doi:10.1016/S0005-2736(02)00596-5

Evans, D.H. – 1993. Osmotic and ionic regulation. In: D.H. Evans (ed.), The Physiology of Fishes, pp. 315-342. CRC Press, Boca Raton.

Evans, D.H., P.M. Piermarini and K.P. Choe. – 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous waste. Phys. Rev., 85: 97-177. doi:10.1152/physrev.00050.2003 PMid:15618479

Frost, P. and F. Nilsen. – 2003. Validation of reference genes for transcription profiling in the salmon louse, Lepeophtheirus salmonis, by quantitative realtime PCR. Veterinarian Parasitology, 118: 168-174.

Gagnon, E., B. Forbush, L. Caron and P. Isenring. – 2003. Functional comparison of renal Na-K-Cl cotransporters between distant species. Am. J. Phys., 284: C365-C370.

Haas, M. – 1994. The Na-K-Cl cotransporters. Am. J. Phys., 267: C869-C885.

Hiroi, J., S.D. McCormick, R. Ohtani-Kaneko and T. Kaneko. – 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+,K+-ATPase, Na+/ K+/ 2Cl- cotransporter and CFTR anion channel. J. Exp. Biol., 208: 2023-2036. doi:10.1242/jeb.01611 PMid:15914646

Hiroi, J. and S.D. McCormick. – 2007. Variation in salinity tolerance, gill Na+,K+-ATPase, Na+/ K+/ 2Cl- cotransporter and mitochondrion- rich cells distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J. Exp. Biol., 210: 1015-1024. doi:10.1242/jeb.002030 PMid:17337714

Hirose, S., T. Kaneko, N. Naito and Y. Takei. – 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Phys., 136B: 593-620.

IUCN. 1996. The 1996 red list of threatened animals. IUCN, Gland, Switzerland, 365-369.

Jarvis, P.L. and J.S. Ballantyne. – 2003. Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture, 219: 891-909. doi:10.1016/S0044-8486(03)00063-2

Khoabandeh, S., Z. Khoshnood and S. Mosafer. – 2009. Immunolocalization of Na+, K+-ATPase-rich Cells in the Gill and Urinary System of Persian Sturgeon, Acipenser persicus, fry in freshwater. Aquaculture Res., 40: 329-336. doi:10.1111/j.1365-2109.2008.02097.x

Kiilerich, P., K. Kristiansen and S.S. Madsen. – 2007. Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J. Endocr., 194: 417-427. doi:10.1677/JOE-07-0185 PMid:17641289

Kultz, D. – 2001. Cellular osmoregulation: beyond ion transport and cell volume. Zoology, 104: 198-208. doi:10.1078/0944-2006-00025 PMid:16351834

Laurent, P. and S.F. Perry. – 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res., 259: 429-442. doi:10.1007/BF01740769

Lin, C.H., R.S. Tsai and T.H. Lee. – 2004. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol., Part A138: 287-295.

Lorin-Nebel, C., V. Boulo, C. Bodinier and G. Charmantier. – 2006. The Na+, K+, 2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J. Exp. Biol., 209: 4908-4922. doi:10.1242/jeb.02591 PMid:17142680

Lowry, O.H., N.J. Rosebrough, A.A.L. Farr and R.J. Randall. – 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265-275.

Lytle, C., J. Xu, D. Biemensderfer and B. Forbush. – 1995. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Phys., 269: C1496-C1505.

Madsen, S.S. – 1990a. The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen. Comp. Endocr., 79: 1-11. doi:10.1016/0016-6480(90)90082-W PMid:2162306

Madsen, S.S. – 1990b. Effect of repetitive cortisol and thyroxine injections on chloride cell number and Na+/K+-ATPase activity in gills of freshwater acclimated rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol., Part A. 95: 171-175.

Mancera, J.M., R.L. Carrion and M.P. Martin del Rio. – 2002. Osmoregulatory action of PRL, GH and Cortisol in the Gilthead Sea bream (Sparus aurata L.). Gen. Comp. Endocr., 129: 95-103. doi:10.1016/S0016-6480(02)00522-1 PMid:12441119

McCormick, S.D. – 1995. Hormonal control of gill Na1, K1–ATPase and chloride cell function. In: C.M. Wood and T.J. Shuttleworth (eds.), Fish Physiology, pp. 285-315. “Ionoregulation: Cellular and Molecular Approaches”, Academic Press, New York.

McCormick, S.D. – 1990. Fluorescent labelling of Na+, K+-ATPase in intact cell by use of fluorescent derivative of ouabain: Salinity and teleost chloride cells. Cell Tissue Res., 260: 529-553. doi:10.1007/BF00297233 PMid:2164884

Mckenzie, D.J., E. Cataldi, P. Di Marco, A. Mandlich, P. Romano, S. Ansferri, P. Bronzi and S. Cataudella. – 1999. Some aspects of osmotic and ionic regulation in Adriatic sturgeon Acipenser naccarii: II: Morpho-Physiological adjustments to hyperosmotic environments. Applied Ichthyol., 15: 61-66. doi:10.1111/j.1439-0426.1999.tb00208.x

Norby, J.G. – 1998. Coupled assay of Na+, K+-ATPase activity. Methods in Enzymology, 156: 116-119. doi:10.1016/0076-6879(88)56014-7

Pelis, R.M. and S.D. McCormick. – 2001. Effects of Growth hormone and Cortisol on Na+, K+-2Cl- cotransporter localisation and abundance in the gills of Atlantic salmon. Gen. Comp. Endocr., 124: 134-143. doi:10.1006/gcen.2001.7703 PMid:11703079

Pickford, G.E., P.K. Pang, E. Weinstein, J. Torretti, E. Hendler and F.H. Epstein. – 1970. The response of the hypophysectomized cyprinodont, Fundulus heteroclitus, to replacement therapy with cortisol: Effects on blood serum and sodium – potassium -activated adenosine triphosphatase in the gills, kidney, and intestinal mucosa. Gen. Comp. Endocr., 14: 524-534. doi:10.1016/0016-6480(70)90036-5 PMid:4246419

Rodriguez, A.E. Gisbert, M.A. Gallardo, S. Santilari, A. Ibarz, J. Sanchez and F. Castello-Orvay. – 2003. Osmoregulation en el esturion siberiano juvenile (Acipenser baerii). Proc. IX congr. Nac. Acuic., Cádiz (Spain): 111-112.

Russell, J.M. – 2000. Sodium-potassium-chloride cotransport. Physiol. Rev., 80: 211-276.

Scott, G.R., J.B. Claiborne, S.L. Edwards, P.M. Schulte and C.M. Wood. – 2004. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport. J. Exp. Biol., 208: 2719-2729. doi:10.1242/jeb.01688 PMid:16000541

Scott, G.R. and P.M. Schult. – 2005. Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp. Biochem. Physiol., Part A. 141: 176-182.

Seidelin, M. S.S. Madsen, A. Bryialsen and K. Kristiansen. – 1999. Effects of insulin-like growth factor-I and cortisol on Na+, K+- ATPase expression in osmoregulatory tissues of Brown trout, Salmo trutta. Gen. Comp. Endocr., 113: 331-342. doi:10.1006/gcen.1998.7225 PMid:10068495

Shrimpton, J.M. and S.D. McCormick. – 1999. Responsiveness of gill Na+, K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J. Exp. Biol., 202: 987-995.

Singer, T.D., B. Finstad, S.D. McCormik, S.B. Wiseman, P.M. Schulte and R.S. McKinley. – 2003. Interactive effects of cortisol treatment and ambient seawater challenge on gill Na, KATPase and CFTR expression in two strains of Atlantic salmon smolts. Aquaculture, 222: 15-28. doi:10.1016/S0044-8486(03)00099-1

Tipsmark, C.K., S.S. Madsen, M. Seidelin, A.S. Christensen, C.P. Cutler and G. Cramb. – 2002. Dynamics of Na+/ K+/ 2Clcotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J. Exp. Zool., 293: 106-118. doi:10.1002/jez.10118 PMid:12115907

Tse, W.K.F. and C.K.C. Wong. – 2006. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem. Biophys. Res. Comm., 346: 1181-1190. doi:10.1016/j.bbrc.2006.06.028 PMid:16793006

Wong, C.K.C. and D.K.O. Chan. – 2001. Effects of Cortisol on chloride cells in the gill epithelium of Japanese eel, Anguilla japonica. Endocrinology, 168: 185-192. doi:10.1677/joe.0.1680185 PMid:11139782

Wood, C.M. and W.S. Marshall. – 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus an euryhaline estuarine teleosts. Estuaries, 17: 34-52. doi:10.2307/1352333

Descargas

Publicado

2009-10-30

Cómo citar

1.
Khodabandeh S, Mosafer S, Khoshnood Z. Efectos de la aclimatización al cortisol y a la salinidad en el Na+/K+/2Cl–- cotransportador de expresión génica y en la actividad Na+, K+-ATPasa en las branquias de juveniles del Esturión de Persia. Sci. mar. [Internet]. 30 de octubre de 2009 [citado 23 de julio de 2024];73(S1):111-6. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1113

Número

Sección

Artículos