Bioactividad química de las esponjas a lo largo de un gradiente ambiental en una cueva mediterránea
DOI:
https://doi.org/10.3989/scimar.2009.73n2387Palabras clave:
bioactividad, toxicidad natural, bioensayo Microtox®, variación temporal, variación ecológica, cuevas, Mediterráneo occidentalResumen
La bioactividad de las esponjas más abundantes en tres comunidades a lo largo de una cueva mediterránea fue cuantificada por medio del bioensayo Microtox® en dos estaciones, primavera (junio) y otoño (noviembre). La bioactividad medida se usó como una aproximación a la inversión en producción de sustancias bioactivas, y se relacionó la bioactividad de las esponjas con su morfología, tasas de crecimiento, y contactos de cada especie con otras. Se estableció un umbral para determinar si una especie es bioactiva mediante una comparación entre el test Microtox® y el test de biotoxicidad en embriones de erizo. En total se estudiaron 30 especies, de las que un 50% fue bioactivo en alguna comunidad o estación del año. Se encontraron importantes diferencias ecológicas (entre comunidades) y estacionales en la bioactividad media. Cuando se relacionó la bioactividad con la morfología de las esponjas se encontró que las esponjas incrustantes tendían a ser más tóxicas que las de otras morfologías. Se detectó una correlación negativa entre bioactividad y crecimiento, lo que sugiere un balance entre inversión de energía en defensa y en otras funciones. Por otro lado, se encontró una correlación negativa entre bioactividad y las asociaciones positivas con otras especies. Estos resultados ponen de manifiesto el importante papel de las interacciones mediadas por sustancias químicas en comunidades de cuevas.
Descargas
Citas
Agell, G., M.J. Uriz, E. Cebrian and R. Martí. – 2001. Does stress protein induction by copper modify natural toxicity in sponges? Environ. Toxicol. Chem., 20: 2588-2593. doi:10.1897/1551-5028(2001)020<2588:DSPIBC>2.0.CO;2 PMid:11699786
Amade, P., C. Charroin, C. Baby and J. Vacelet. – 1987. Antimicrobial activities of marine sponges from the Mediterranean Sea. Mar. Biol., 94: 271-275. doi:10.1007/BF00392940
Becerro, M.A., M.J. Uriz and X. Turon. – 1995. Measuring toxicity in marine environment: critical appraisal of three commonly used methods. Experientia, 51: 414-418. doi:10.1007/BF01928907
Becerro, M.A., X. Turon and M.J. Uriz. – 1997a. Multiple functions for secondary metabolites in encrusting marine invertebrates. J. Chem. Ecol., 23: 1527-1547. doi:10.1023/B:JOEC.0000006420.04002.2e
Becerro, M.A., M.J. Uriz and X. Turon. – 1997b. Chemically–mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poesilosclerida). Hydrobiologia, 356: 77-89. doi:10.1023/A:1003019221354
Becerro, M.A., V.J. Paul and J. Starmer. – 1998. Intracolonial variation in chemical defenses of the sponge Cacospongia sp. And its consequences on generalist fish predators and the specialist nudibranch predator Glossodoris pallida. Mar. Ecol. Prog. Ser., 168: 187-196. doi:10.3354/meps168187
Becerro, M.A., R.W. Thacker, X. Turon, M.J. Uriz and V.J. Paul. – 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 135: 91-101.
Betancourt-Lozano, M., F. Gónzalez-Farias, B. Gónzalez-Acosta, A. García-Gasca and J.R. Bastida-Zavala. – 1998. Variation of antimicrobial activity of the sponge Aplysina fistularis (Pallas, 1766) and its relation to associated fauna. J. Exp. Mar. Biol. Ecol., 223: 1-18. doi:10.1016/S0022-0981(97)00153-6
Bibiloni M.A., M.J. Uriz and J.M. Gili. – 1989. Sponge communities in three submarine caves of the Balearic Islands (Western Mediterranean): adaptations and faunistic composition. P.S.Z.N. I Mar. Ecol., 10: 317-334 doi:10.1111/j.1439-0485.1989.tb00076.x
Blunt J.W., B.R. Copp, W.P. Hu, M.H.G. Munro, P. Northcote and M.R. Prinsep. – 2008. Marine Natural Products. Nat. Prod. Rep., 25: 35-94. doi:10.1039/b701534h PMid:18250897
Botsford, J.L. – 2002. A comparison of ecotoxicological tests. Altern. Lab. Anim., 30: 539-550.
Burns, E., I. Ifrach, S. Carmeli, J.R. Pawlik and M. Ilan. – 2003. Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar. Ecol. Prog. Ser., 25: 105-114. doi:10.3354/meps252105
Chanas, B. and J.R. Pawlik. – 1995. Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar. Ecol. Prog. Ser., 127: 195-211. doi:10.3354/meps127195
Conover, W.O. and R.L. Iman. – 1981. Rank transformation as a bridge between parametric and nonparametric statistics. Am. Stat., 35: 124. doi:10.2307/2683975
Cronin, G. – 2001. Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: J.B. McClintock and B.J. Baker (eds.), Marine Chemical Ecology, pp. 325-353. CRC press, Boca Raton.
De Caralt, S., M.J. Uriz and R.H. Wijffels. – 2008. Grazing, differential size-class dynamics and survival of a Mediterranean sponge species: Corticium candelabrum (Demospongiae: Homosclerophorida). Mar. Ecol. Progr. Ser., 360: 97-106. doi:10.3354/meps07365
De Nys, R., S.A. Dworjanyn and P.D. Steinberg. – 1998. A new method for determining surface concentrations of marine natural products on seaweeds. Mar. Ecol. Prog. Ser., 162: 79-87. doi:10.3354/meps162079
Engel, S. and J.R. Pawlik. – 2000. Allelopathic activities of sponge extracts. Mar. Ecol. Prog. Ser., 207: 273-281. doi:10.3354/meps207273
Engel, S. and J.R. Pawlik. – 2005a. Interactions among Florida sponges. I. Reef habitats. Mar. Ecol. Progr. Ser., 303: 133-144. doi:10.3354/meps303133
Engel, S. and J.R. Pawlik. – 2005b. Interactions among Florida sponges. II. Mangrove habitats. Mar. Ecol. Progr. Ser., 303: 145-152. doi:10.3354/meps303145
Garrabou, J. and M. Zabala. – 2001. Growth dynamics in four Mediterranean demosponges. Est. Coast. Shelf Sci., 52: 293-303. doi:10.1006/ecss.2000.0699
Garson, M.J. – 2001. Ecological perspectives on marine natural product biosynthesis. In: J.B. McClintock and B.J. Baker (eds.), Marine Chemical Ecology, pp. 71-114. CRC Press, Boca Raton.
Gili, J.M., T. Riera and M. Zabala. – 1986. Physical and biological gradients in a submarine cave on the Western Mediterranean coast (north-east Spain). Mar. Biol., 90: 291-297. doi:10.1007/BF00569141
Green, G., P. Gomez and G.J. Bakus. – 1985. Antimicrobial and ichthyotoxic properties of marine sponges from Mexican waters. In: K. Rutzler (ed.), New perspectives in sponge biology, pp. 109-114. 3rd Int. Sponge Conf. Smithsonian Institution Press. Washington.
Jackson, J.B.C. – 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat., 111: 743-767. doi:10.1086/283203
Jackson, J.B.C. – 1979. Morphological strategies of sessile animals. In: G. Larwood and B.R. Rosen (eds.), Biology and systematics of colonial organisms II, pp. 499-555. Academic press, London.
Jackson, J.B.C. and L.W. Buss. – 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. Nat. Acad. Sci. USA, 72: 5160-5163. doi:10.1073/pnas.72.12.5160
Knoke, D. and P.J. Burke. – 1991. Log-Linear Models. Quantitative applications in the social sciences, Vol. 20. Sage, Newbury Park.
López-Legentil, S., N. Bontemps-Subielos, X. Turon and B. Banaigs. – 2007. Secondary metabolite and inorganic contents in Cystodytes sp. (Ascidiacea): temporal patterns and association with reproduction and growth. Mar. Biol., 151: 293-299. doi:10.1007/s00227-006-0472-4
Martí, R., A. Fontana, M.J. Uriz and G. Cimino. – 2003. Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification. J. Chem. Ecol., 29: 1307-1318. doi:10.1023/A:1024201100811 PMid:12918917
Martí, R., M.J. Uriz and X. Turon. – 2004a. Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlaton to biotic and abiotic factors. Mar. Ecol. Prog. Ser., 282: 73-85. doi:10.3354/meps282073
Martí. R., M.J. Uriz, E. Ballesteros and X. Turon. – 2004b. Benthic assemblages along two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. J. Mar. Biol. Ass. UK, 84: 557-572.
Martí. R., M.J. Uriz, E. Ballesteros and X. Turon. – 2004c. Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. J. Mar. Biol. Ass. UK, 84: 573-580.
Martín, D. and M.J. Uriz. – 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. J. Exp. Mar. Biol. Ecol., 173: 11-27. doi:10.1016/0022-0981(93)90205-3
Newbold, R.W., P.R. Jensen, W. Fenical and J.R. Pawlik. – 1999. Antimicrobial activity of Caribbean sponges extracts. Aquat. Microb. Ecol., 19: 279-284. doi:10.3354/ame019279
Pawlik, J.R., B. Chanas, B., R.J. Toonen and W. Fenical. – 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser., 127: 183-194. doi:10.3354/meps127183
Porter, J.W., N.M. Targett. – 1988. Allelochemical interactions between sponges and corals. Biol. Bull., 175: 230-239. doi:10.2307/1541563
Potvin, C. and D.A. Roff. – 1993. Distribution-Free and robust statistical methods: viable alternatives to parametric statistics? Ecology, 74, 1617-1628. doi:10.2307/1939920
Ribo, J.M and K.L.E. Kaiser. – 1987 Photobacterium phosphoreum toxicity bioassay. I. Test methods and procedures. Toxic. Assess., 2: 305-323. doi:10.1002/tox.2540020307
Ribo, J.M. and F. Rogers. – 1990. Toxicity of mixtures of aquatic contaminants using the luminescent bacteria bioassay. Toxic. Assess., 5: 135-152. doi:10.1002/tox.2540050203
Schupp, P., C. Eder, V.J. Paul and P. Proksch. – 1999. Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar. Biol., 135: 573-580. doi:10.1007/s002270050658
Thacker, R.W., M.A. Becerro, W.A. Lumbang and V.J. Paul. – 1998. Allelopathic interactions between sponges on a tropical reef. Ecology, 79: 1740-1750.
Thompson, J.E. – 1985. Exudation of biologically active metabolites in the sponge Aplysina fistularis. I. Biological evidence. Mar. Biol., 88: 23-26. doi:10.1007/BF00393039
Thompson, J.E., P.T. Murphy, P.R. Bergquist and E.A. Evans. – 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochem. System. Ecol., 15: 596-606. doi:10.1016/0305-1978(87)90111-6
Turon, X., M.A. Becerro, M.J. Uriz and J. Llopis. – 1996a. Smallscale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia, 108, 351-360.
Turon, X., M.A. Becerro and M.J. Uriz. – 1996b. Seasonal patterns of toxicity in benthic invertebrates: the encrusting sponge Crambe crambe (Poecilosclerida). Oikos, 75: 33-40. doi:10.2307/3546318
Turon, X., I. Tarjuelo and M.J. Uriz. – 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defences. Funct. Ecol., 12, 631-639. doi:10.1046/j.1365-2435.1998.00225.x
Turon, X., M.A. Becerro and M.J. Uriz. – 2000. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tiss. Res., 301: 311-322. doi:10.1007/s004410000233 PMid:10955726
Uriz, M.J., D. Martin, X. Turon, E. Ballesteros, R. Hughes and C. Acebal. – 1991. An approach to the ecological significance of chemically mediated bioactivity in Mediterranean benthic communities. Mar. Ecol. Prog. Ser., 70: 175-188. doi:10.3354/meps070175
Uriz, M.J., D. Martín and D. Rosell. – 1992. Relationships of biological and taxonomic characteristics to chemically mediated bioactivity in Mediterranean littoral sponges. Mar. Biol., 113: 287-297.
Uriz, M.J., X. Turon, M.A. Becerro, J. Galera and J. Lozano. – 1995. Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar. Ecol. Prog. Ser., 124: 159-170. doi:10.3354/meps124159
Uriz, M.J., M.A. Becerro, J.M. Tur and X. Turon. – 1996. Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar. Biol., 124: 583-590. doi:10.1007/BF00351039
Vacelet, J., T. Perez and J.N.A. Hooper. – 2002. Demospongiae incertae sedis: Mycelospongia Vacelet and Peres, 1998. In: J.N.A. Hooper and R.W.M. van Soest (eds.), Systema Porifera: a guide for the classification of sponges, pp. 1099-1101. Kluve Academic/Plenum Publisher, New York.
Walker, R.P., J.E. Thompson and D.J. Faulkner. – 1985. Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar. Biol., 88: 27-32. doi:10.1007/BF00393040
Willenz, P. and S.A. Pomponi. – 1996. A new deep sea coralline sponge from Turks and Caicos Islands: Willardia caicosensis gen. et sp. Nov (Demospongiae: Hadromerida). Bull. Inst. Roy. Sci. Nat. Belgique, 66 Suppl: 205-218.
Zabala, M., T. Riera, J.M. Gili, M. Barangué, A. Lobo and J. Peñuelas. – 1989. Water flow, trophic depletion, and benthic macrofauna impoverishment in a submarine cave from the western Mediterranean. P.S.Z.N. I Mar. Ecol., 10: 271-287. doi:10.1111/j.1439-0485.1989.tb00478.x
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.