Relationship between viral and prokaryotic abundance on the Bajo O’Higgins 1 Seamount (Humboldt Current System off Chile)
DOI:
https://doi.org/10.3989/scimar.2007.71n137Keywords:
virus-like particles, prokaryotes, seamount, oxygen minimum zone, benthic boundary layer, Humboldt Current SystemAbstract
There is little known about the ecology of microbial communities living in the water column over seamounts. Here, for the first time, the spatial distribution and abundance of virus-like particles (VLP) are described over a seamount. The association between VLP distribution, prokaryotic abundance, and environmental variables is also analyzed. Sampling was conducted in December 2004 on the Bajo O’Higgins 1 seamount (32°54’S, 73°53’W) located in the Humboldt Current System off Chile. A oxygen minimum layer (OMZ) was clearly present between 130 and 280 m in the water column over the seamount. Water samples were taken with Niskin bottles at 10 oceanographic stations over the seamount at depths of 5, 20, 50, 75, 100, and 150 m and at the benthic boundary layer (BBL; 5-12 m over the sediments). Temperature, salinity, oxygen, chlorophyll , and phaeopigments were measured at each station. Viral and prokaryotic abundances were determined with fluorochrome SYBR Green I. Viral abundance ranged from 1.53 x 109 VLP L-1 - 16.48 x 109 VLP L-1, whereas prokaryotic abundance ranged from 1.78 x 10 8 cell L-1 - 14.91 x 108 cell L-1. The virus-like particle/prokaryote ratio varied widely among the analyzed layers (i.e. surface, OMZ, and BBL), probably due to the presence of different prokaryotic and viral assemblages in each layer. Our results indicate that the environmental conditions, mainly the concentration of dissolved oxygen in the water column over Bajo O’Higgins 1 seamount, shape the association between viral and prokaryotic abundance.
Downloads
References
Alonso, M.C., F. Jiménez-Gómez, J. Rodríguez and J.J. Borrego. – 2001. Distribution of virus-like particles in a oligotrophic marine environment (Alborean sea, Western Mediterrean). Microb. Ecol., 42: 407-415. doi:10.1007/s00248-001-0015-y PMid:12024265
Antezana, T. – 1978. Distribution of Euphausiids in the Chile-Perú Current with particular reference to the endemic Euphausia mucronata and the oxygen minima layer. Ph. D. thesis, Univ. California.
Arana, P. – 1987. Perspectiva histórica y proyecciones de la actividad pesquera realizada en el Archipiélago de Juan Fernández, Chile. In: J.C. Castilla (ed.), Islas oceánicas chilenas: Conocimiento científico y necesidades de investigaciones, pp. 319-353. Editorial Universidad Católica de Chile.
Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. – 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263. doi:10.3354/meps010257
Baker, K.S., R.C. Smith, and J.R. Nelson. – 1983. Chlorophyll determinations with filter fluorometer: Lamp/filter combination can minimize error. Limnol. Oceanogr., 28: 1037-1040.
Bergh, Ø., K.Y. Børsheim, G. Bratbak and M. Heldal. – 1989. High abundance of viruses found in aquatic environments. Nature, 340: 467-468. doi:10.1038/340467a0 PMid:2755508
Bettarel, Y., T. Sime-Ngando, C. Amblard, J.F. Carrias and C. Portelli. – 2003. Virioplankton and microbial communities in aquatic systems: a seasonal study in two lakes of differing trophy. Freshw. Biol., 48: 810-822. doi:10.1046/j.1365-2427.2003.01064.x
Boehlert, G.W. and A. Genin. – 1987. A review of the effects of seamounts on biological processes. In: B.H. Keating, P. Fryer, R. Batiza and G.W. Boehlert (eds.), Seamounts, islands and atolls. Geophys. Monograph, 43: 319-334.
Brandhorst, W. – 1971. Condiciones oceanográficas estivales frente a la costa de Chile. Rev. Biol. Mar., 14: 45-84.
Bratbak, O., M. Hendal, S. Norland, and T.F. Thingstad. – 1990. Viruses as patterns in spring bloom microbial trophodynamics. Appl. Environ. Microbiol., 56: 1400-1405.
Brett M.T., F.S. Lubnow, M. Villar-Argaiz, A. Müller-Solger and C.R Goldman. – 1999. Nutrient control of bacterioplankton and phytoplankton dynamics. Aquat. Ecol., 33: 135-145. doi:10.1023/A:1009998915078
Brussaard, C.P.D. – 2004. Optimization of procedure for counting viruses by flow citometry. Appl. Environ. Microbiol., 70: 1506-1513. doi:10.1128/AEM.70.3.1506-1513.2004 PMid:15006772 PMCid:368280
Castro-González, M. – 2004. La importancia de la comunidad desnitrificante en el reciclamiento del N2O en la Zona de Mínimo de Oxígeno (ZMO) del norte de Chile. Doctorate Thesis, Univ. Concepción.
Castro-González, M., G. Braker, L. Farías and O. Ulloa. – 2005. Communities of nirS type denitrifiers in the water column of the oxygen minimum zone in the Eastern South Pacific. Environ. Microbiol., 7: 1298-1306. doi:10.1111/j.1462-2920.2005.00809.x PMid:16104853
Chen, F., J. Lu, B.J. Binder, Y. Liu and R.D. Hodson. – 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl. Environ. Microbiol., 67: 539-545. doi:10.1128/AEM.67.2.539-545.2001 PMid:11157214 PMCid:92618
Cochlan, W.P., J. Wikner, G.F. Steward, D.C. Smith, and F. Azam. – 1993. Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser., 92: 77-87. doi:10.3354/meps092077
Comeau, L.A., A.F. Vézina, M. Bourgeois and K. Juniper. – 1995. Relationship between phytoplankton production and the physical structure of the water column near Cobb Seamount, Northeast Pacific. Deep-Sea Res., 42: 993-1005. doi:10.1016/0967-0637(95)00050-G
Corinaldesi, C., E. Crevatin, P.D. Negro, M. Marini, A. Russo, S. Fonda-Umani and R. Danovaro. – 2003. Large-scale distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis. Appl. Environ. Microbiol., 69: 2664-2673. doi:10.1128/AEM.69.5.2664-2673.2003 PMid:12732535 PMCid:154510
Cuevas, L.A., G. Daneri, B. Jacob and P. Montero. – 2004. Microbial abundance and activity in the seasonal upwelling area off Concepción (~36 °S), central Chile: a comparison of upwelling and non-upwelling conditions. Deep-Sea Res. II, 51: 2427-2440. doi:10.1016/j.dsr2.2004.07.026
Culley, A.I. and N.A. Welschmeyer. – 2002. The abundance, distribution, and correlation of viruses, phytoplankton, and prokaryotes along a Pacific Ocean transect. Limnol. Oceanogr., 47: 1508-1513.
Drake, L.A., K.H. Choi, A.G.E. Haskell and F.C. Dobbs. – 1998. Vertical profiles of virus-like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquat. Microb. Ecol., 16: 17-25. doi:10.3354/ame016017
Eissler, Y. and R.A. Quiñones. – 1999. Microplanktonic respiration off northern Chile during El Niño 1997-1998. J. Plankton Res., 21: 2263-2283. doi:10.1093/plankt/21.12.2263
Eissler, Y. and R.A. Quiñones. – 2003. The effect of viral concentrate addition on the respiration rate of Chaetoceros gracilis cultures and microplankton from a shallow bay (Coliumo, Chile). J. Plankton Res., 25: 927-938. doi:10.1093/plankt/25.8.927
Fuhrman, J.A. and R.T. Noble. – 1995. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr., 40: 1236-1242.
Fuhrman, J.A. – 1999. Marine viruses and their biogeochemical an ecological effects. Nature, 399: 541-548. doi:10.1038/21119 PMid:10376593
Gantzer, C., E. Bubois, J.M. Crance, S. Billaudel, H. Kopecka, L. Schwartzbrod, M. Pommepuy and F. Le Guyader. – 1998. Influence of environmental factors on the survival enteric viruses in seawater. Oceanol. Acta, 21: 983-992. doi:10.1016/S0399-1784(99)80020-6
Glud, R.N. and M. Middelboe. – 2004. Virus and bacteria dynamics of a coastal sediments: Implication for benthic carbon cycling. Limnol. Oceanogr. 49: 2073-2081.
González, R.R. and R.A. Quiñones. – 2002. LDH activity in Euphausia mucronata and Calanus chilensis: implications for vertical migration behaviour. J. Plankton Res., 24: 1349-1356 doi:10.1093/plankt/24.12.1349
Graco, M., L. Farias, V. Molina, D. Gutiérrez and L.P. Nielsen. – 2001. Massive develop of microbial mats following phytoplankton blooms in a natural eutrophic bay: Implications of the nitrogen cycling. Limnol. Oceanogr., 46: 821-832
Holm-Hansen, O. and B. Riemann. – 1978. Chlorophyll a determination: improvements in methodology. Oikos, 30: 438-447. doi:10.2307/3543338
Hara, S., I. Koike, K. Terauchi, H. Kamiya and E. Tanoue. – 1996. Abundance of viruses in deep oceanic water. Mar. Ecol. Prog. Ser., 145: 269-277. doi:10.3354/meps145269
Heidelberg, J.F., K.B. Heidelberg and R.R. Colwell. – 2002. Seasonality of Chesapeake Bay Bacterioplankton species. Appl. Environ. Microbiol., 68: 5488-5497.
Hewson, I., J.M. O’Neil, J.A. Fuhrman and W.C. Dennison. – 2001. Virus-like particles distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46: 1734-1746.
Judkins, D. C. – 1980. Vertical distribution of zooplankton in relation to the oxygen minimum off Peru. Deep-Sea Res. A, 27: 475-487. doi:10.1016/0198-0149(80)90057-6
Lee, S., Y.C. Kang and J.A. Fuhrman. – 1995. Imperfect retention of natural bacterioplankton cells by glass-fiber filters. Mar. Ecol. Prog. Ser., 119: 285-290. doi:10.3354/meps119285
Levipan, H. – 2006. Incorporación heterotrófica de leucina por Arquea en la columna de agua de la plataforma continental de Concepción. M. Sc. Thesis. Univ. Concepción.
Lunau, M., A. Lemke, K. Walther, W. Martens-Habbena and M. Simon. – 2005. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ. Microbiol., 7: 961-968. doi:10.1111/j.1462-2920.2005.00767.x PMid:15946292
Marie, D., C.P.D. Brussard, R. Thyrhaug, G. Bratbak and D. Vaulot. – 1999. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol., 65: 45-52.
Middelboe, M. – 2000. Bacterial growth rate and marine virus-host dynamics. Microb. Ecol., 40: 114-124.
Molina, V. – 2004. Nitrificación en un fuerte gradiente de oxígeno asociado a la zona de mínima de oxígeno del Pacífico Sur-Oriental (~21 y 23 ªS). Ph. D. Thesis. Univ. Concepción.
Morales, E. – 1985. El Pacífico del sudeste, sus islas oceánicas y problemas asociados. In: P. Arana (ed.), Investigaciones marinas del Archipiélago de Juan Fernández, pp 15-23. Universidad Católica de Valparaíso, Valparaíso.
Noble, R.T. and J.A. Fuhrman. – 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol., 14: 113-118. doi:10.3354/ame014113
Olson, M.R., R.P. Axlera and R.E. Hicks. – 2004. Effects of freezing and storage temperature on MS2 viability. J. Virol. Methods, 122: 147-152. doi:10.1016/j.jviromet.2004.08.010 PMid:15542138
Parson, T.R., Y. Maita, and C.M Lalli. – 1984. A Manual of chemical and biological methods for seawater analysis. Pergamon Press, Elmsford.
Peterson, W.T., D.F. Arcos, G.B. McManus, H. Dam, D. Bellantoni, T. Johnson and P. Tiselius. – 1988. The nearshore zone during coastal upwelling: Daily variability and coupling between primary and secondary production of Central Chile. Prog. Oceanogr., 20: 1-40. doi:10.1016/0079-6611(88)90052-3
Pizarro, G., R. Astoreca, G. Alarcón, V. Montecino and L. Guzmán. – 2001. Variabilidad espacial del fitoplancton de primavera: Bases para la estimación de biomasa mediante sensores remotos. (Entre Valparaíso-Archipiélago de Juan Fernández-islas Desventuradas). Taller sobre los resultados del Crucero Cimar 6 Islas Oceánicas.
Proctor, L.M. and J.A. Fuhrman. – 1990. Viral mortality of marine bacteria and cyanobacteria. Nature, 343: 60-62. doi:10.1038/343060a0
Pusch, C., A. Beckmann, F. Mora Porteiro and H. Von Westernhagen. – 2004. The influence of seamounts on mesopelagic fish communities. Arch. Fish. Mar. Res., 51: 165-186.
Rowden, A. and M. Clark. – 2004. Uncovering secrets of our seamounts. Water & Atmosphere, 12: 22-23.
Schallenberg, M. and C.W. Burns. – 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshw. Biol., 49: 143-159. doi:10.1046/j.1365-2426.2003.01172.x
Schneider, W., R. Fuenzalida, E. Rodríguez-Rubio, J. Garcés- Vargas and L. Bravo. – 2003. Characteristics and formation of Eastern South Pacific Intermediate Water. Geophys. Res. Lett., 30: 1581, doi:10.1029/2003GL017086. doi:10.1029/2003GL017086
Sievers, H.A. and N. Silva. – 1982 Masas de agua y circulación geostrófica frente a la costa de Chile entre latitudes 18°S y 33°S (Operación oceanográfica MARCHILE VII). Cienc. Tec. Mar. CONA, 6: 61-99.
Silva, N. – 1983. Masas de agua y circulación en la región del norte de Chile, latitudes 18°S-32°S (Operación Oceanográfica Mar Chile XI-ERFEN II). Cienc. Téc. Mar. CONA, 7: 47-84.
Sime-Ngando, T., K. Juniper and A. Vézina. – 1992. Ciliated protozoan communities over Cobb Seamount: increase in biomass and spatial patchiness. Mar. Ecol. Prog. Ser., 89: 37-51. doi:10.3354/meps089037
Spencer, R. – 1955. A marine bacteriophage. Nature, 175: 690-691. doi:10.1038/175690a0 PMid:14370199
Steward, G.F., D.C. Smith and F. Azam. – 1996. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar. Ecol. Prog. Ser., 131: 287-300. doi:10.3354/meps131287
Stockner, J.G., M.E. Klut and W.P. Cochlan. – 1990. Leaky filter: a warning to aquatic ecologists. Can. J. Fish. Aquat. Sci., 47: 16-23. doi:10.1139/f90-002
Stramski, D. – 1990. Artifacts in measuring absorption-spectra of phytoplankton collected on a filter. Limnol. Oceanogr., 35: 1804-1809.
Strub, P.T., J.M. Mesías, V. Montecino and J. Rutllant. – 1998. Coastal ocean circulation off western South America. In: Robinson, A.R. and K.H. Brink (eds.), The global coastal ocean, pp. 273-313. The Sea, Vol. 11. Interscience, New York.
Suess, E. – 1980. Particulate organic flux in the ocean: Surface productivity and oxygen utilization. Nature, 288: 260-263. doi:10.1038/288260a0
Sugimura, Y. and Y. Suzuki. – 1988. A high temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem., 24: 105-131. doi:10.1016/0304-4203(88)90043-6
Suzuki, Y., E. Tanoue and H. Ito. – 1992. A high-temperature catalytic oxidation method for the determination of dissolved organic carbon in seawater: analysis and improvement. Deep- Sea Res., 39: 185-198. doi:10.1016/0198-0149(92)90104-2
Suttle, C.A., A.M. Chan and M.T. Cottrell. – 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 347: 467-469. doi:10.1038/347467a0
Taylor, G.T., C. Hein and M. Iabichella. – 2003. Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquat. Microb. Ecol., 30: 103-116. doi:10.3354/ame030103
Torella, F. and R.Y. Morita. – 1979. Evidence by micrograph for a high incidence of bacteriophage particles in the water of Yaquina Bay, Oregon: ecological and taxonomical implication. Appl. Environ. Microbiol., 37: 774-778.
Turley, C. – 2000. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interface of the NE Atlantic. FEMS Microbiol. Ecol., 33: 89-99.
Ulloa, O. – 2003. Photosynthesis in the oxygen minimum zone of the eastern South Pacific. In: Proceed NATO, Adv. Res. Workshop: 103.
Valentine, A.F., P.K. Chen, R.R. Colwell and G.B. Chapman. – 1966. Structure of a marine bacteriophage as revealed by the negative-staining technique. J. Bacteriol., 91: 819-822.
Vanucci, S., V. Bruni and G. Pulicano. – 2005. Spatial and temporal distribution of virioplankton and bacterioplankton in a Brackish Environment (Lake of Ganzirri, Italy). Hydrobiologia 539: 83-92. doi:10.1007/s10750-004-3368-7
Wangersky, P.J. – 1993. Dissolved organic carbon methods: a critical review. In: J.I. Hedges. and C. Lee (eds.), Measurements of dissolved organic carbon and nitrogen in natural water. Mar. Chem., 41: 61-74.
Weinbauer, M.G. – 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev., 28: 127-181. doi:10.1016/j.femsre.2003.08.001 PMid:15109783
Weinbauer, M.G. and M.G. Höfle. – 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol., 64: 431-438.
Weinbauer, M.G. and C.A. Suttle. – 1997. Comparison of epifluorescence and transmission electron microscopy for counting viruses in natural marine waters. Aquat. Microb. Ecol., 13: 225-232. doi:10.3354/ame013225
Weinbauer, M.G., D. Fuks and P. Peduzzi. – 1993. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the Northern Adriatic Sea. Appl. Environ. Microbiol., 59: 4074-4082.
Weinbauer, M.G., C. Winter and M.G. Höfle. – 2002. Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat. Microb. Ecol., 27: 103-110. doi:10.3354/ame027103
Weinbauer, M.G., I. Brettar and M.G. Höfle. – 2003. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine water. Limnol. Oceanogr., 48: 1457-1465.
Wen, K., A.C. Ortmann and C. Suttle. – 2004. Accurate estimation of viral abundance by epifuorescence microscopy. Appl. Environ. Microbiol., 70: 3862-3867. doi:10.1128/AEM.70.7.3862-3867.2004 PMid:15240256 PMCid:444834
Winter, C., G. Herndl and M.G. Weinbauer. – 2004. Diel cycles in viral infection of bacterioplankton in the North Sea. Aquat. Microb. Ecol., 35: 207-216. doi:10.3354/ame035207
Winter, C., A. Smit, T. Szoeke-Dénes, G.J. Herndl and M.G. Weinbauer. – 2005. Modelling viral impact on bacterioplankton in the North Sea using artificial neural networks. Environ. Microbiol., 7: 881–893. doi:10.1111/j.1462-2920.2005.00768.x PMid:15892707
Wommack, K.E. and R.R Colwell. – 2000. Virioplankton: Viruses in the aquatic ecosystems. Microbiol. Mol. Biol. Rev., 64: 69-114. doi:10.1128/MMBR.64.1.69-114.2000 PMid:10704475 PMCid:98987
Young, Z., F. Balbontin, J. Rivera, M.I. Ortego, R. Taschero, M. Rojas and S. Lillo. – 2000. Estudio biológico-pesquero del recurso Orange Roughy. Informe final. Investigación y Fomento Pesquero. FIP N° 99-05.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.