El uso del ajuste lineal en los espectros de tamaño de biomasa para diseñar indicadores ecosistémicos
DOI:
https://doi.org/10.3989/scimar.03708.22APalabras clave:
espectro de tamaños de biomasa, distribución de Pareto, modelo bioenergético, hipótesis de la biomasa constante, redes tróficas complejas, gestión del ecosistemaResumen
Los espectros de tamaño de biomasa son un método ataxonómico para describir la estructura de comunidades acuáticas. La pendiente (b) del espectro de tamaños de biomasa normalizado (ETBN) se usa como un indicador del impacto de perturbaciones tales como polución y sobrepesca. El intercepto del ETBN (a) ha sido normalmente ignorado debido a una correlación observada entre la pendiente y el intercepto del ETBN, aunque no se ha demostrado la recurrencia de esta correlación. Se evaluó esta correlación entre los parámetros usando: (i) análisis teórico, (ii) comunidades virtuales generadas aleatoriamente basado en consideraciones estadísticas, y (iii) redes tróficas virtuales cambiando en el tiempo siguiendo un modelo bioenergético dinámico. Además, se analizó si los parámetros de la distribución de Pareto estaban o no correlacionados usando los enfoques (i) y (ii). Cuando las comunidades cambian en el tiempo no existe una única correlación entre los parámetros del ETBN, debido a una dependencia en la variación de la abundancia comunitaria (N). Para caracterizar cualquier sistema acuático se necesitan al menos dos coeficientes del ETBN de la triada N, a, b. En la distribución de Pareto los dos parámetros, NPareto y bPareto, son necesarios.
Descargas
Citas
Bartkiw S., Boldt J., Livingston P., Walters G., Hoff G. 2007. Indicators of size diversity in the eastern Bering Sea. Copenhagen Denmark Ices 2007/E: 21.
Beddington J.R. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44: 331-340. http://dx.doi.org/10.2307/3866
Benoit E., Rochet M.J. 2004. A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J. Theor. Biol. 226: 9-21. http://dx.doi.org/10.1016/S0022-5193(03)00290-X
Berlow E.L., Dunne J.A., Martinez N.D., Stark P.B., Williams R.J., Brose U. 2009. Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. U.S.A. 106: 187-191. http://dx.doi.org/10.1073/pnas.0806823106 PMid:19114659 PMCid:PMC2629248
Bianchi G., Gislason H., Graham K., Hill L., Jin X., Koranteng K., Manickchand-Heileman S., Payá I., Sainsbury K., Sanchez F., Zwanenburg K. 2000. Impact of fishing on size composition and diversity of demersal fish communities. ICES J. Mar. Sci. 57: 558-571. http://dx.doi.org/10.1006/jmsc.2000.0727
Binduo X., Xianshi S. 2005. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985–2002. Fish. Res. 71: 79-91. http://dx.doi.org/10.1016/j.fishres.2004.07.011
Blanchard J.L., Jennings S., Law R., Castle M.D., McCloghrie P., Rochet M.J., Benoit E. 2009. How does abundance scale with body size in coupled size-structured food webs? J. Anim. Ecol. 78: 270-280. http://dx.doi.org/10.1111/j.1365-2656.2008.01466.x PMid:19120607
Blanchard J.L., Law R., Castle M.D., Jennings S. 2011. Coupled energy pathways and the resilience of size-structured food webs. Theor. Ecol. 4(3): 289-300. http://dx.doi.org/10.1007/s12080-010-0078-9
Blanco J.M., Echevarría F., García C. 1994. Dealing with size spectra: some conceptual and mathematical problems. Sci. Mar. 58: 17-29.
Blumenshine S.C., Lodge D.M., Hodgson J.R. 2000. Gradient of fish predation alters body size distributions of lake benthos. Ecology 81(2): 374-386.
Borgmann U. 1983. Effect of somatic growth and reproduction on biomass transfer up pelagic food web as calculated from particle-size-conversion efficiency. Can. J. Fish. Aquat. Sci. 44: 136-140. http://dx.doi.org/10.1139/f87-316
Borgmann U. 1985. Predicting the effect of toxic substances on pelagic ecosystems. Sci. Total Environ. 44: 111-121. http://dx.doi.org/10.1016/0048-9697(85)90115-9
Borgmann U. 1987. Models on the shape of, and biomass flow up, the biomass size-spectrum. Can. J. Fish. Aquat. Sci. 44(suppl. 2): 136-140. http://dx.doi.org/10.1139/f87-316
Borgmann U., Whittle D.M. 1983. Particle-size-conversion efficiency and contaminant concentrations in Lake Ontario biota. Can. J. Fish. Aquat. Sci. 40: 328-336. http://dx.doi.org/10.1139/f83-048
Boudreau P.R., Dickie L.M., Kerr S. 1991. Body-size spectra of production and biomass as system-level indicators of ecological dynamics. J. Theor. Biol. 152: 329-339. http://dx.doi.org/10.1016/S0022-5193(05)80198-5
Boudreau P.R., Dickie L.M. 1992. Biomass spectra of aquatic ecosystems in relation to fisheries yield. Can. J. Fish. Aquat. Sci. 49: 1528-1538. http://dx.doi.org/10.1139/f92-169
Brose U., Berlow E.L., Martinez N.D. 2005. Scaling up keystone effects from simple to complex ecological networks. Ecol. Lett. 8: 1317-1325. http://dx.doi.org/10.1111/j.1461-0248.2005.00838.x
Brose U., Williams R.J., Martinez N.D. 2006. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9: 1228-1236. http://dx.doi.org/10.1111/j.1461-0248.2006.00978.x PMid:17040325
Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771-1789. http://dx.doi.org/10.1890/03-9000
Brucet S., Boix D., López-Flores R., Badosa A., Moreno-Amich R., Quintana X.D. 2006. Size and species diversity of zooplankton communities in fluctuant Mediterranean salt marshes. Estuar. Coast. Shelf Sci. 67: 424-432. http://dx.doi.org/10.1016/j.ecss.2005.11.016
Camacho J., Sole R.V. 2001. Scaling in ecological size spectra. Europhys. Lett. 55(6): 774-780. http://dx.doi.org/10.1209/epl/i2001-00347-0
Capitán J.A., Delius G.W. 2010. Scale-invariant model of marine population dynamics. Physical Review E 81: 061901. http://dx.doi.org/10.1103/PhysRevE.81.061901 PMid:20866434
Choi J.S., Mazumder A., Hansell R.I.C. 1999. Measuring perturbation in a complicated, thermodynamic world. Ecol. Model. 117: 143-158. http://dx.doi.org/10.1016/S0304-3800(99)00042-3
Clauset A., Shalizi C.R., Newman M.E.J. 2009. Power-law distributions in empirical data. SIAM Rev. 51: 661-703. http://dx.doi.org/10.1137/070710111
Cousins S.H. 1985. Ecologists build pyramids again. New Scient. 106: 50-54.
Cury P., Shannon L., Shin Y. 2003. The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M., Valdimarsson G. (eds), Responsible fisheries in the marine ecosystem. FAO, Rome, pp. 103-123. http://dx.doi.org/10.1079/9780851996332.0103
Daan N., Gislason H., Pope J.G., Rice J.C. 2005. Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES J. Mar. Sci. 62: 177-188. http://dx.doi.org/10.1016/j.icesjms.2004.08.020
de Bruyn A.M.H., Marcogliese D.J., Rasmussen J.B. 2002. Altered body size distributions in a large river fish community enriched by sewage. Can. J. Fish. Aquat. Sci. 59: 818-828.
DeAngelis D.L., Goldstein R.A., O'Neill R.V. 1975. A model for trophic interactions. Ecology 56: 881-892. http://dx.doi.org/10.2307/1936298
Dickie L.M., Kerr S.R., Boudreau P.R. 1987. Size-dependent processes underlying regularities in ecosystem structure. Ecol. Monogr. 57: 233-250. http://dx.doi.org/10.2307/2937082
Dimech, M., Camilleri, M.,Hiddink, J.G., Kaiser M.J., Ragonese S., Schembri P.J. 2008. Differences in demersal community structure and body-size spectra within and outside the Maltese Fishery Management Zone. Sci. Mar. 72(4): 669-682. http://dx.doi.org/10.3989/scimar.2008.72n4669
Drgas A., Radziejewska T., Warzocha J. 1998. Biomass size Spectra of near-shore shallow-water benthic communities in the Gulf of Gdansk (Southern Baltic Sea). Mar. Ecol. 19(3): 209-228. http://dx.doi.org/10.1111/j.1439-0485.1998.tb00463.x
Echevarría F., Carrillo P., Jimenez F., Sanchez-Castillo P., Cruz Pizarro L., Rodriguez J. 1990. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). J. Plankton Res. 12(2): 415-422. http://dx.doi.org/10.1093/plankt/12.2.415
Finlay K., Beisner B.E., Patoine A., Pinel-Alloul B. 2007. Regional ecosystem variability drives the relative importance of bottomup and top-down factors of zooplankton size spectra. Can. J. Fish. Aquat. Sci. 64: 516-529. http://dx.doi.org/10.1139/f07-028
Gaedke U. 1993. Ecosystem analysis based on biomass-size distributions: a case study of a plankton community in a large lake. Limnol. Oceanogr. 38: 112-127. http://dx.doi.org/10.4319/lo.1993.38.1.0112
Garcia S.M., Kolding J., Rice J., Rochet M.J., Zhou S., Arimoto T., Beyer J.E., Borges L., Bundy A., Dunn D., Fulton E.A., Hall M., Heino M., Law R., Makino M., Rijnsdorp A.D., Simard F., Smith A.D.M. 2012. Reconsidering the consequences of selective fisheries. Science 335(6072): 1045-1047. http://dx.doi.org/10.1126/science.1214594 PMid:22383833
Gislason H., Rice J. 1998. Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES J. Mar. Sci. 55: 362-370. http://dx.doi.org/10.1006/jmsc.1997.0323
Gobert B. 1994. Size structures of demersal catches in a multispecies multigear tropical fishery. Fish. Res. 19:87-104. http://dx.doi.org/10.1016/0165-7836(94)90016-7
Gómez-Canchong P., Qui-ones R.A., Brose U. 2013. Robustness of normalized biomass size-structure across ecological networks. Theor. Ecol. 6: 45-56. http://dx.doi.org/10.1007/s12080-011-0156-7
Gómez-Canchong P., Qui-ones R.A., Manjarrés L.M. 2011. Size structure of a heavily fished benthic/demersal community by shrimp trawling in the Colombian Caribbean Sea. Lat. Am. J. Aquat. Res. 39(1): 43-55.
Jennings S., Dinmore T.A., Duplisea D.E., Warr K.J., Lancaster J.E. 2001. Trawling disturbance can modify benthic production processes. J. Anim. Ecol. 70: 459-475. http://dx.doi.org/10.1046/j.1365-2656.2001.00504.x
Jennings S., Dulvy N.K. 2005. Reference points and reference directions for size-based indicators of community structure. ICES J. Mar. Sci. 62: 397-404. http://dx.doi.org/10.1016/j.icesjms.2004.07.030
Jennings S., Kaiser M.J. 1998. The effects of fishing on marine ecosystems. Adv. Mar. Biol. 34: 201-352. http://dx.doi.org/10.1016/S0065-2881(08)60212-6
Kerr S.R., Dickie L.M. 2001. Biomass Spectrum. Columbia University Press.
Law R., Plank M.J., James A., Blanchard J.L. 2009. Size spectra dynamics from stochastic predation and growth of individuals. Ecology 90(3): 802-811. http://dx.doi.org/10.1890/07-1900.1 PMid:19341149
Lundvall D., Svanbäck R., Persson L., Byström P. 1999. Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can. J. Fish. Aquat. Sci. 56: 1285-1292.
Macpherson E., Gordoa A., García-Rubies A. 2002. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuar. Coast. Shelf Sci. 55: 777-788. http://dx.doi.org/10.1006/ecss.2001.0939
Macpherson E., Gordoa A. 1996. Biomass spectra in benthic fish assemblages in the Benguela system. Mar. Ecol. Prog. Ser. 138: 27-32. http://dx.doi.org/10.3354/meps138027
Makarieva A.M., Gorshkov V.G., Li B.L. 2004. Body size, energy consumption and allometric scaling: a new dimension in the diversity-stability debate. Ecol. Complex. 1: 139-175. http://dx.doi.org/10.1016/j.ecocom.2004.02.003
Mara-ón E., Cerme-o P., Rodríguez J., Zubkov M.V., Harris R.P. 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnol. Oceanogr. 52(5): 2120-2198.tr>
McAbendroth L., Ramsay P.M., Foggo A., Rundle S.D., Bilton D.T. 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279-290. http://dx.doi.org/10.1111/j.0030-1299.2005.13804.x
MoloneyC.L., Field J.G. 1985. Use of particle-size data to predict potential pelagic-fish yields of some southern African areas. S. Afr. J. Mar. Sci. 3: 119-128. http://dx.doi.org/10.2989/025776185784461144
Murawski S.A., Idoine J.S. 1992. Multispecies size composition: A conservative property of exploited fishery systems? J. Northw. Atl. Fish. Sci. 14: 79-85. http://dx.doi.org/10.2960/J.v14.a5
Odum E.P. 1971. Fundamentals of Ecology. Third ed. Saunders, Philadelphia.
Pareto V. 1897. Cours d'economie politique. In: Busino G. (ed.) 1964. OEuvres complètes, Busino, vol. 1, Genève.
Pauly D., Christensen V. 1995. Primary production required to sustain global fisheries. Nature (374): 255-257. http://dx.doi.org/10.1038/374255a0
Peterson I., Wroblewski J.S. 1984. Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci. 41: 1117-1120. http://dx.doi.org/10.1139/f84-131
Platt T. 1985. Structure of the marine ecosystem: Its allometric basis. In: Ulanowicz R.E., Platt T. (eds), Ecosystem theory for biological oceanography. Can. Bull. Fish. Aquat. Sci. 213: 55-64.
Platt T., Denman K. 1977. Organization in the pelagic ecosystem. Helgol. Wiss. Meresunter. 30: 575-581. http://dx.doi.org/10.1007/BF02207862
Platt T., Denman K. 1978. The structure of the pelagic marine ecosystems. Rapp. Proc.-Verb. Reun. Cons. Perm. Int. Explor. Mer. 173: 60-65.
Pope J.D., Stokes T.K., Murawski S.A., Idoine S.I. 1987. A comparison of fish size composition in the North Sea and on Georges Bank. In: Wolff W., Soeder C.J., Drepper F.R. (eds), Ecodynamics, Contributions to Theoretical Ecology. Springer-Verlag, Berlin, pp. 146-152.
Quintana X.D., Comín F.A., Moreno-Amich R. 2002. Biomass-size spectra in aquatic communities in shallow fluctuating Mediterranean salt marshes (Empordà wetlands, NE Spain). J. Plankton Res. 24: 1149-1161. http://dx.doi.org/10.1093/plankt/24.11.1149
Quintana X.D., Brucet S., Boix D., López-Flores R., Gascón S., Badosa A., Sala J., Moreno-Amich R., Egozcue J.J. 2008. A nonparametric method for the measurement of size diversity with emphasis on data standarization. Limnol Oceanogr: Meth 6: 75-86. http://dx.doi.org/10.4319/lom.2008.6.75
Quiñones R.A. 1994. A comment on the use of allometry in the study of pelagic ecosystem processes. Sci. Mar. 58: 11-16. Qui-ones R.A., Platt T., Rodríguez J. 2003. Patterns of biomass size spectra from oligotrophic waters of the Northwest Atlantic. Prog. Oceanogr. 57: 405-427.
Quiroga E., Qui-ones R.A., Palma M., Sellanes J., Gallardo V.A., Gerdes D., Rowe G. 2005. Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar. Coast. Shelf Sci. 62: 217-231. http://dx.doi.org/10.1016/j.ecss.2004.08.020
Real L.A. 1977. Kinetics of functional response. Am. Nat. 111: 289-300. http://dx.doi.org/10.1086/283161
Rice J., Gislason H. 1996. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models. ICES J. Mar. Sci. 53: 1214-1225. http://dx.doi.org/10.1006/jmsc.1996.0146
Robson B.J., Barmuta L.A., Fairweather P.G. 2005. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture. Mar. Freshw. Res. 56: 1-11. http://dx.doi.org/10.1071/MF04210
Rochet M.J., Benoît E. 2011. Fishing destabilizes the biomass flow in the marine size spectrum. Proc. R. Soc. B http://www.ncbi.nlm.nih.gov/pubmed/21632631.
Rodriguez J. 1994. Some comments on the size based structural analysis of the pelagic ecosystem. Sci. Mar. 58: 1-10.
Rodriguez J., Mullin M. 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31(2): 361-370. http://dx.doi.org/10.4319/lo.1986.31.2.0361
San Martin E., Harris R.P., Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res. Part II 53: 1560-1572. http://dx.doi.org/10.1016/j.dsr2.2006.05.006
Schwinghamer P. 1985. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. In: Gibbs P.E. (ed.). Proceedings of the 19th European Marine Biology Symposium, September 1984, pp. 347-360.
Sheldon R.W., Prakash A., Sutcliffe Jr W.H. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327-340. http://dx.doi.org/10.4319/lo.1972.17.3.0327
Sheldon R.W., Sutcliffe Jr W.H., Prakash A. 1977. Structure of pelagic food chain and relationships between plankton and fish production. J. Fish. Res. Board Can. 34: 2334-2353. http://dx.doi.org/10.1139/f77-314
Shin Y.J., Cury P. 2004. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can. J. Fish. Aquat. Sci. 61: 414-431. http://dx.doi.org/10.1139/f03-154
Shin Y.J., Rochet M.J., Jennings S., Field J.G., Gislason H. 2005. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES J. Mar.Sci. 62: 384-396. http://dx.doi.org/10.1016/j.icesjms.2005.01.004
Silvert W., Platt T. 1978. Energy flux in the pelagic ecosystem: a time dependent equation. Limnol. Oceanogr. 18: 813-816. http://dx.doi.org/10.4319/lo.1978.23.4.0813
Silvert W., Platt T. 1980. Dynamic energy-flow model of the particle size-distribution in pelagic ecosystems. In: Kerfoot W.C. (ed.), Evolution and ecology of zooplankton communities. The University Press of New England, Hanover, New Hampshire, pp. 754-763.
Skalsk, G.T., Gillia, J.F, 2001. Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82: 3083-3092. http://dx.doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
Sprules W.G., Goyke A.P. 1994. Size-Based Strudure and Production in the Pelagia of Lakes Ontario and Michigan. Can. J. Fish. Aquat. Sci. 51: 2603-2611. http://dx.doi.org/10.1139/f94-260
Sprules W.G., Munawar M. 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789-1794. http://dx.doi.org/10.1139/f86-222
Thiebaux M.L., Dickie L.M. 1992. Models of aquatic biomass size spectra and the common structure of their solutions. J. Theor. Biol. 159: 147-161. http://dx.doi.org/10.1016/S0022-5193(05)80699-X
Thiebaux M.L., Dickie L.M. 1993. Structure of the body-size spectrum of the biomass in aquatic ecosystems: A consequence of allometry in predator-prey interactions. Can. J. Fish. Aquat. Sci. 50:1308-1317. http://dx.doi.org/10.1139/f93-148
Thomann R.V. 1979. An analysis of PCB in Lake Ontario using a size-dependent food chain model. In: Scavia D., Robertson A. (eds), Perspectives on Lake Ecosystem Modelling. Ann. Arbor Sci. 293-320.
Thomann R.V. 1981. Equilibrium model of fate of microcontaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci. 38: 280-296. http://dx.doi.org/10.1139/f81-040
Vidondo B., Prairie Y., Blanco J.M., Duarte C.M. 1997. Some aspects of the analysis of size spectra in aquatic ecology. Limnol. Oceanogr. 42(1): 184-192. http://dx.doi.org/10.4319/lo.1997.42.1.0184
Wang H., Morrison W., Singh A., Weiss H. 2009. Modeling inverted biomass pyramids and refuges in ecosystems. Ecol. Model. 220: 1376-1382. http://dx.doi.org/10.1016/j.ecolmodel.2009.03.005
Warwick R.M., Collins N.R., Gee J.M., George C.L. 1986. Species size distributions of benthic and pelagic Metazoa: Evidence for interaction. Mar. Ecol. Prog. Ser. 34: 63-68. http://dx.doi.org/10.3354/meps034063
White E.P., Ernest S.K.M., Kerkhoff A.J., Enquist B.J. 2007 Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22: 323-330. http://dx.doi.org/10.1016/j.tree.2007.03.007 PMid:17399851
Williams R.J. Martinez N.D. 2000. Simple rules yield complex webs. Nature 404: 180-183. http://dx.doi.org/10.1038/35004572 PMid:10724169
Williams R.J., Martinez N.D. 2004. Stabilization of chaotic and non permanent food web dynamics. Eur. Phys. J. B. 38: 297-303. http://dx.doi.org/10.1140/epjb/e2004-00122-1
Yodzis P., Innes S. 1992. Body size and consumer-resource dynamics. Am. Nat. 139: 1151-1175. http://dx.doi.org/10.1086/285380
Yvon-Durocher G., Montoya J.M., Trimmer M., Woodward G. 2011. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Chang. Biol. 17: 1681-1694. http://dx.doi.org/10.1111/j.1365-2486.2010.02321.x
Zhou M. 2006. What determines the slope of a plankton biomass spectrum? J. Plankton Res. 28(5): 437-448. http://dx.doi.org/10.1093/plankt/fbi119
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.