Regional marine climate scenarios in the NE Atlantic sector close to the Spanish shores
DOI:
https://doi.org/10.3989/scimar.04328.07AKeywords:
climate change, surface temperature, surface salinity, sea level, wavesAbstract
We present an overview of the changes expected during the 21st century in key marine parameters (sea surface temperature, sea surface salinity, sea level and waves) in the sector of the NE Atlantic Ocean close to the Spanish shores. Under the A1B scenario, open-sea surface temperatures would increase by 1°C to 1.5°C by 2050 as a consequence of global ocean warming. Near the continental margin, however, the global temperature rise would be counteracted by an enhancement of the seasonal upwelling. Sea surface salinity is likely to decrease in the future, mainly due to the advection of high-latitude fresher waters from ice melting. Mean sea level rise has been quantified as 15-20 cm by 2050, but two contributions not accounted for by our models must be added: the mass redistribution derived from changes in the large-scale circulation (which in the NE Atlantic may be as large as 15 cm in 2050 or 35 cm by 2100) and the increase in the ocean mass content due to the melting of continental ice (for which estimates are still uncertain). The meteorological tide shows very small changes, and therefore extreme sea levels would be higher in the 21st century, but mostly due to the increase in mean sea level, not to an increase in the storminess. The wave projections point towards slightly smaller significant wave heights, but the changes projected are of the same order as the natural variability.
Downloads
References
Adloff F., Somot S., Sevault F., et al. 2015. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45 (9): 2775-2802 http://dx.doi.org/10.1007/s00382-015-2507-3
Álvarez I., Gomez-Gesteira M., De Castro M., et al. 2008. Spatio-temporal evolution of upwelling regime along the western coast of the Iberian Peninsula. J. Geophys. Res. 113: C07020. http://dx.doi.org/10.1029/2008JC004744
Álvarez-Fanjul E., Pérez B., Rodríguez I. 2001. NIVMAR: A storm-surge forecasting system for Spanish waters. Sci. Mar. 60: 145-154. http://dx.doi.org/10.3989/scimar.2001.65s1145
Alves J.M.R., Miranda P.M.A. 2013. Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses. Tellus A. 65: 19245. http://dx.doi.org/10.3402/tellusa.v65i0.19245
Backhaus J.O. 1985. A Three-Dimensional model for simulation of shelf sea dynamics. Dt. Hydrogr. Z. 38: 164-187. http://dx.doi.org/10.1007/BF02328975
Bamber J.L., Aspinall W.P. 2013. An expert judgement assessment of future sea level rise from the ice sheets. Nature Clim. Change 3: 424-427. http://dx.doi.org/10.1038/nclimate1778
Barnier B. 1998. Forcing the ocean, in ocean modeling and parameterisation. In: Chassignet E.P., Verron J. (eds), NATO Sciences Series, vol. 516. Kluwer Academic Publishers, pp. 45-80.
Bopp L., Resplandy L., Orr J.C., et al. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosci. 10: 6225-6245. http://dx.doi.org/10.5194/bg-10-6225-2013
Bourdallé R., Treguier A.M. 2006. A climatology of run-off for the global ocean-ice model ORCA025. Mercator-Ocean reference: MOO-RP-425-365-MER, August 2006.
Boutov D., Peliz A., Miranda P.M.A., et al. 2014. Inter-annual variability and long term predictability of exchanges through the Strait of Gibraltar. Global Planet. Change 114: 23-37. http://dx.doi.org/10.1016/j.gloplacha.2013.12.009
Calafat F.M., Jordà G., Marcos M., et al. 2012. Comparison of Mediterranean sea level variability as given by three baroclinic models. J. Geophys. Res. 117: C02009. http://dx.doi.org/10.1029/2011JC007277
Cordeiro Pires A., Nolasco R., Rocha A., et al. 2013. Assessing future climate change in the Iberian Upwelling System. Proceedings of the 12th International Coastal Symposium (Plymouth, England), J. Coast. Res., Special Issue No. 65: 1909-1914, ISSN 0749-0208.
Dee D.P., Uppala S.M., Simmons A.J., et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc. 137: 553-597. http://dx.doi.org/10.1002/qj.828
Griffies S.M., Greatbatch R.J. 2012. Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model. 51: 37-72. http://dx.doi.org/10.1016/j.ocemod.2012.04.003
Gualdi S. et al. 2011. Future Climate Projections, In: Navarra A. and Tubiana L. (eds), Regional Assessment of Climate Change in the Mediterranean, Springer, Dordrecht, The Netherlands. PMCid:PMC3098770
Günther H., Hasselman S., Jansen P.A.E. 1992. The WAM model cycle, 4 (revised version). Technical Report 4, Deutsches Klimarechenzentrum (DKRZ), Hamburg, Germany.
Hemer M.A., Katzfey J., Trenham C. 2012. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model. 70: 221-245. http://dx.doi.org/10.1016/j.ocemod.2012.09.008
Hemer M.A., Fan Y., Mori N., et al. 2013. Projected changes in wave climate from a multi-model ensemble. Nature Clim. Change 3: 471-476. http://dx.doi.org/10.1038/nclimate1791
Ishii M., Kimoto M. 2009. Reevaluation of Historical Ocean Heat Content Variations with Time-Varying XBT and MBT Depth Bias Corrections. J. Oceanogr. 65: 287-299. http://dx.doi.org/10.1007/s10872-009-0027-7
IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Working Group I contribution to the IPCC Fifth Assessment Report. Cambridge Univ. Press, UK. www.ipcc.ch/report/ar5/wg1
Ivanovic R.F., Valdes P.J., Gregoire L., et al. 2014. Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model. Clim. Dyn. 42: 859-877. http://dx.doi.org/10.1007/s00382-013-1680-5
Jordà G., Gomis D. 2013. On the interpretation of the steric and mass components of sea level variability. The case of the Mediterranean basin. J. Geophys. Res. 118: 953-963. http://dx.doi.org/10.1002/jgrc.20060
Jordà G., Gomis D., Álvarez-Fanjul E., et al. 2012. Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global Planet. Change, 80-81: 198-214. http://dx.doi.org/10.1016/j.gloplacha.2011.10.013
Jones C.G., Willen U., Ullerstig A., et al. 2004. The Rossby Centre Regional Atmospheric Climate Model part I: model climatology and performance for the present climate over Europe. Ambio, 33: 199-210. http://dx.doi.org/10.1579/0044-7447-33.4.199 PMid:15264598
Landerer F.W., Gleckler P.J., Lee T. 2014. Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations. Clim. Dyn. 43: 1271-1283. http://dx.doi.org/10.1007/s00382-013-1939-x
Lebeaupin-Brossier C., Bérangerr K., Deltel C., et al. 2011. The Mediterranean response to different space–time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model. 36: 1-25. http://dx.doi.org/10.1016/j.ocemod.2010.10.008
Levitus S., Boyer T. P. 1994. World Ocean Atlas, Volume 4: Temperature. NOAA Atlas NESDIS 4, U.S. Department of Commerce, Washington D.C., 117 pp.
Levitus S., Burgett R., Boyer T.P. 1994. World Ocean Atlas, Volume 3: Salinity. NOAA Atlas NESDIS 3, U.S. Department of Commerce, Washington D.C., 99 pp.
Little C.M., Horton R.M., Kopp R.E., et al. 2015. Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections. J. Climate 28: 838-852. http://dx.doi.org/10.1175/JCLI-D-14-00453.1
Lorbacher K., Marsland S.J., Church J.A., et al. 2012. Rapid barotropic sea level rise from ice sheet melting, J. Geophys. Res. 117: C06003. http://dx.doi.org/10.1029/2011JC007733
Madec G. 2008. NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN No. 1288-1619.
Marcos M., Jordà G., Gomis D., et al. 2011. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Global Planet. Change 77: 116-128. http://dx.doi.org/10.1016/j.gloplacha.2011.04.002
Martínez-Asensio A., Tsimplis M.N., Marcos M., et al. 2015a. Response of the North Atlantic wave climate to atmospheric modes of variability. Int. J. Climatol. In press.
Martínez-Asensio A., Marcos M., Tsimplis M.N., et al. 2015b. On the ability of statistical wind-wave models to capture the variability and long-term trends of the North Atlantic winter wave climate. Ocean Model. (in press).
Meehl G.A., Stocker T.F., Collins W., et al. 2007. Global climate projections. In: Solomon S., Qin D., Manning M. (eds), Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge.
Miranda P.M.A., Alves J.M.R., Serra N. 2012. Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim. Dyn. 40(11): 2813-2824.
Pope V.D., Gallani M.L., Rowntree P.R., et al. 2000. The impact of new physical parametrizations in the Hadley Centre climate model - HadAM3. Clim. Dyn. 16: 123-146. http://dx.doi.org/10.1007/s003820050009
Relvas P., Luis J., Santos A.M.P. 2009. Decadal changes in the Canary system. Geophys. Res. Lett. 36, L22601. http://dx.doi.org/10.1029/2009GL040504
Roeckner E., Bauml G., Bonaventura L., et al. 2003. The atmospheric general circulation model ECHAM 5. Part I: model description. Technical Report 349, Max Planck Institute for Meteorology.
Samuelsson P., Jones C.G., Willen U., et al. 2011. The Rossby Centre regional model RCA3: Model description and performance. Tellus A 63: 4-23. http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x
Slangen A.B.A., Carson M., Katsman C.A., et al. 2014. Projecting twenty-first century regional sea-level changes. Climatic Change 124: 317-332. http://dx.doi.org/10.1007/s10584-014-1080-9
Soto-Navarro J., Somot S., Sevault F., et al. 2014. Evaluation of regional ocean circulation models for the Mediterranean Sea at the strait of Gibraltar: volume transport and thermohaline properties of the outflow. Clim. Dyn. 44: 1277-1292. http://dx.doi.org/10.1007/s00382-014-2179-4
Terray L., Corre L., Cravatte S., et al. 2012. Near-Surface Salinity as Nature's Rain Gauge to Detect Human Influence on the Tropical Water Cycle. J. Climate 25: 958-977. http://dx.doi.org/10.1175/JCLI-D-10-05025.1
Uppala S.M., Kallberg P.W., Simmons A.J., et al. 2005. The ERA- 40 re-analysis. Quart. J. R. Meteorol. Soc. 131: 2961-3012. http://dx.doi.org/10.1256/qj.04.176
Vörösmarty C., Fekete B., Tucker B. 1998. Global river discharge, 1807-1991, v. 1.1 RivDIS Data set, http://www.daacornl.gov from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA.
WAMDI Group. 1988. The WAM model - a third generation ocean wave prediction model. J. Phys. Oceanogr. 18: 1775-1810. http://dx.doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.