What can size distributions within cohorts tell us about ecological processes in fish larvae?
DOI:
https://doi.org/10.3989/scimar.2009.73s1119Keywords:
growth strategies, life history, mortality, prey concentration, size distribution, temperature, trade-offAbstract
Marine fish larvae are subject to variable environments, which is probably reflected in their growth and survival rates. Mortality rates are generally high and size-dependent. At the species level, these mortality rates are usually accompanied by correspondingly high growth rates. Here we provide examples from experimental studies with Atlantic cod (Gadus morhua) and Atlantic herring (Clupea harengus) larvae, in which multiple cohorts were followed over time. Body size, prey concentrations, and temperature are shown to influence growth rates. We present a method based on cumulative size distributions (CSDs) for visualizing variability of sizes within cohorts over time. Analysis of CSDs revealed size-selective mortality and variations among populations in size- and temperature-dependent growth throughout ontogeny. We found that cod larvae consistently exhibit higher growth rates than herring larvae. While cod larvae may have an advantage over herring larvae when food availability is high, herring were more able to survive at low food concentrations than cod. Cod and herring seem to represent two growth strategies: cod larvae are relatively small at hatching and a high growth rate appears to be a prerequisite for success, whereas herring larvae are initially large, but grow more slowly.
Downloads
References
Bailey, K.M. and E.D. Houde. – 1989. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol., 25: 1-83. doi:10.1016/S0065-2881(08)60187-X
Baumann, H., R. Voss, H.-H. Hinrichsen, V. Mohrholz, J.O. Schmidt and A. Temming. – 2008. Investigating the selective survival of summer- and spring-born sprat, Sprattus sprattus, in the Baltic Sea. Fish. Res., 91: 1-14. doi:10.1016/j.fishres.2007.11.004
Bertram, D.F., R.C. Chambers and W.C. Leggett. – 1993. Negative correlations between larval and juvenile growth rates in winter flounder: implications of compensatory growth for variation in size-at-age. Mar. Ecol. Prog. Ser., 96: 209-215. doi:10.3354/meps096209
Billerbeck, J.M., T.E. Lankford and D.O. Conover. – 2001. Evolution of intrinsic growth and energy acquisition rates. I. Tradeoffs with swimming performance in Menidia menidia. Evolution, 55(9): 1863-1872.
Buckley, L.J., E.M. Caldarone and G. Lough. – 2004. Optimum temperature and food-limited growth on larval Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on Georges Bank. Fish. Ocean., 13: 134-140. doi:10.1046/j.1365-2419.2003.00278.x
Chambers, R.C. and T.J. Miller. – 1995. Evaluating fish growth by means of otolith increment analysis: special properties of individual-level longitudinal data. Secor, In: D.H., Dean, J.M. and Campana, S.E. (eds.). Recent developments in fish otolith research, pp. 155-175. Columbia, SC, University of South Carolina Press.
Fiksen, Ø. and A. Folkvord. – 1999. Modelling growth and ingestion processes in herring Clupea harengus larvae. Mar. Ecol. Prog. Ser., 184: 273-289. doi:10.3354/meps184273
Fiksen, Ø., C. Jørgensen, T. Kristiansen, F. Vikebø and G. Huse.– 2007. Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Mar. Ecol. Prog. Ser., 347: 195-205. doi:10.3354/meps06978
Finn, R.N., I. Rønnestad, T. van der Meeren and H.J. Fyhn. – 2002. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser., 243: 217-234. doi:10.3354/meps243217
Folkvord, A. – 2005. Comparison of size-at-age of larval cod (Gadus morhua L.) from different populations based on sizeand temperature-dependent models. Can. J. Fish. Aquat. Sci., 62: 1037-1052. doi:10.1139/f05-008
Folkvord, A. and H. Otterå. – 1993. Effects of initial size distribution, day length and feeding frequency on growth, survival and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture, 114: 243-260. doi:10.1016/0044-8486(93)90300-N
Folkvord, A., G. Blom, A. Johannessen and E. Moksness. – 2000. Growth dependent age estimation in herring (Clupea harengus L.) larvae. Fish. Res., 46: 91-103. doi:10.1016/S0165-7836(00)00136-3
Folkvord, A., A. Johannessen and E. Moksness. – 2004. Temperature dependent otolith growth in herring (Clupea harengus) larvae. Sarsia, 89(5): 297-310. doi:10.1080/00364820410002532
Folkvord, A., V. Øiestad and P.G. Kvenseth. – 1994. Growth patterns of three cohorts of Atlantic cod larvae (Gadus morhua L.) studied in a macrocosm. ICES J. Mar. Sci., 51(3): 325-336. doi:10.1006/jmsc.1994.1033
Fuiman, L.A. and A.E. Magurran. – 1994. Development of predator defences in fishes. Rev. Fish Biol. Fish., 4(2): 145-183. doi:10.1007/BF00044127
Gallego, A. and M. Heath. – 1997. The effect of growth-dependent mortality, external environment and internal dynamics on larval fish otolith growth: an individual-based modelling approach. J. Fish Biol., 51(Suppl. A): 121-134. doi:10.1111/j.1095-8649.1997.tb06096.x
Heath, M. and A. Gallego. – 1997. From the biology of the individual to the dynamics of the population: bridging the gap in fish early life studies. J. Fish Biol., 51(Suppl. A): 1-29. doi:10.1111/j.1095-8649.1997.tb06090.x PMid:9236083
Houde, E.D. – 1989. Comparative growth, mortality and energetics of marine fish larvae: temperature and latitudinal effects. Fish. Bull. U.S., 87(3): 471-495.
Houde, E.D. – 1997. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol., 51(Suppl. A): 52-83. doi:10.1111/j.1095-8649.1997.tb06093.x
Hunter, J.R. and K.M. Coyne. – 1982. The onset of schooling in northern anchovy larvae, Engraulis mordax. CalCOFI Rep., 23: 246-251.
Jobling, M. and J. Koskela. – 1996. Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth. J. Fish Biol., 49(4): 658-667. doi:10.1111/j.1095-8649.1996.tb00062.x
Jordaan, A. and J.A. Brown. – 2003. The risk of running on empty: the influence of age on starvation and gut fullness in larval Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 60(10): 1289-1298. doi:10.1139/f03-108
Koedijk, R., A. Folkvord, A. Foss, K. Pittman, S.O. Stefansson, S. Handeland and A. Imsland. – in press. The influence of first feeding diet on the Atlantic cod phenotype, with emphasis on growth, survival, RNA:DNA and long term implications. J. Fish Biol.
Kristiansen, T., Ø. Fiksen and A. Folkvord. – 2007. Modelling feeding, growth and habitat selection in larval cod: observations and model predictions in a macrocosm environment. Can. J. Fish. Aquat. Sci., 64: 136-151. doi:10.1139/F06-176
Kristiansen, T., C. Jørgensen, R. G. Lough, F. Vikebø and Ø. Fiksen.– 2009. Trading risk and growth: exploring behavioral rules of larval cod on Georges Bank. Behav. Ecol. 20(3): 490-500. doi:10.1093/beheco/arp023
Lankford, T.E., J.M. Billerbeck and D.O. Conover. – 2001. Evolution of intrinsic growth and energy acquisition rates. II. Tradeoffs with vulnerability to predation in Menidia menidia. Evolution, 55(9): 1873-1881. doi:10.1111/j.0014-3820.2001.tb00836.x PMid:11681742
Litvak, M.K. and W.C. Leggett. – 1992. Age and size-selective predation on larval fishes: the bigger-is-better hypothesis revisited. Mar. Ecol. Prog. Ser., 81(1): 13-24. doi:10.3354/meps081013
McGurk, M.D. – 1986. Natural mortality of marine pelagic fish eggs and larvae: Role of spatial patchiness. Mar. Ecol. Prog. Ser., 34(3): 227-242. doi:10.3354/meps034227
McGurk, M.D. – 1992. Avoidance of towed plankton nets by herring larvae: a model of night-day catch ratios based on larval length, net speed and mesh width. J. Plankton Res., 14(1): 173-181. doi:10.1093/plankt/14.1.173
Meekan, M.G. and L. Fortier. – 1996. Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar. Ecol. Prog. Ser., 137: 25-37. doi:10.3354/meps137025
Nielsen, R. and P. Munk. – 2004. Growth pattern and growth dependent mortality of larval and pelagic juvenile North Sea cod Gadus morhua. Mar. Ecol. Prog. Ser., 278: 261-270. doi:10.3354/meps278261
Øiestad, V. and E. Moksness. – 1981. Study of growth and survival of herring larvae (Clupea harengus L.) using plastic bag and concrete basin enclosures. Rapp. P.-verb. Réun. Cons. Int. Explor. Mer, 178: 144-149.
Otterlei, E., G. Nyhammer, A. Folkvord and S.O. Stefansson. –1999. Temperature and size dependent growth of larval and juvenile cod (Gadus morhua L.) - a comparative study between Norwegian coastal cod and Northeast Arctic cod. Can. J. Fish. Aquat. Sci., 56: 2099-2111. doi:10.1139/cjfas-56-11-2099
Otterå, H. – 1992. Bias in calculating growth rates in cod (Gadus morhua L.) due to size-selective growth and mortality. J. Fish Biol., 40: 465-467. doi:10.1111/j.1095-8649.1992.tb02591.x
Pedersen, B.H. – 1993. Growth and mortality in young herring (Clupea harengus); effects of repetitive changes in food availability. Mar. Biol., 117: 547-550. doi:10.1007/BF00349764
Puvanendran, V., B.J. Laurel and J.A. Brown. – 2008. Cannibalism of Atlantic cod Gadus morhua larvae and juveniles on firstweek larvae. Aquat. Biol., 2: 113-118. doi:10.3354/ab00044
Rosenberg, A.A. and A.S. Haugen. – 1982. Individual growth and size-selective mortality of larval turbot, Scophthalmus maximus, reared in enclosures. Mar. Biol., 72: 73-77. doi:10.1007/BF00393950
Scharf, F.S., J.A. Buckel and F. Juanes. – 2002. Size-dependent vulnerability of juvenile bay anchovy Anchoa mitchilli to bluefish predation: Does large body size always provide a refuge? Mar. Ecol. Prog. Ser., 233: 241-252. doi:10.3354/meps233241
Seljeset, O., K.W. Vollset, A. Folkvord and A.J. Geffen. – in press. The role of prey concentration and size range in the growth and survival of larval cod. Mar. Biol. Res.
Skajaa, K., A. Fernö A. and A. Folkvord. – 2003. Swimming, feeding and predator avoidance in cod larvae (Gadus morhua L.): trade-offs between hunger and predation risk. In H.I. Browman and A.B. Skiftesvik (eds.). The Big Fish Bang: Proceedings of the 26th Annual Larval Fish Conference, pp. 105-121. Institute of Marine Research, Bergen, Norway.
Takasuka, A., I. Aoki and I. Mitani. – 2004. Three synergistic growth-related mechanisms in the short-term survival of larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser., 270: 217-228. doi:10.3354/meps270217
Tian, T., Ø. Fiksen and A. Folkvord. – 2007. Estimating larval fish growth under size-dependent mortality: a numerical analysis of bias. Can. J. Fish. Aquat. Sci., 64: 554-562. doi:10.1139/F07-031
Vikebø, F., C. Jørgensen, T. Kristiansen and Ø. Fiksen. – 2007. Drift, growth, and survival of larval Northeast Arctic cod with simple rules of behaviour. Mar. Ecol. Prog. Ser., 347: 207-219. doi:10.3354/meps06979
Vollset, K.W., O. Seljeset, Ø. Fiksen and A. Folkvord. – 2009. A common garden experiment with larval Northeast Arctic and Norwegian coastal cod cohorts in replicated mesocosms. Deep Sea Res. II, doi:10.1016/j.dsr2.2008.11.009. doi:10.1016/j.dsr2.2008.11.009
Werner, R.G. and J.H.S. Blaxter. – 1980. Growth and survival of larval herring (Clupea harengus) in relation to prey density. Can. J. Fish. Aquat. Sci., 37: 1063-1069.
Winemiller, K.O. and K.A. Rose. – 1993. Why do most fish produce so many tiny offspring. Am. Nat., 142(4): 585-603. doi:10.1086/285559 PMid:19425962
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.