Effect of terrigenous sediments on macroalgae functional-form groups of coral reefs in Capurganá, Colombian Caribbean

Authors

DOI:

https://doi.org/10.3989/scimar.05146.013

Keywords:

functional groups, Colombian Caribbean, sedimentation, ecology, phase shift, filamentous algae

Abstract


Increased sedimentation in the marine environment has been described as a key factor in the degradation of coral reefs. One of the most important biological components of coral reefs is macroalgae. The objective of this study was to determine whether the effects of terrigenous sediments on macroalgae affect the current state of the coral reef ecosystem. In an in situ experiment in Capurganá Bay, terrigenous sediments were added to artificial plates and the impact on the recruitment and growth of the macroalgae was examined. In this experiment, three treatments were used: sediment addition and two natural conditions, one up to 10 m distance from the sediment addition (control 1) and one between 15 and 20 m distance from the sediment addition (control 2). The results indicated a high complexity and variability in the response of reef algae to the effects of sedimentation depending on the sediment grade size deposited. The addition had a positive effect on the recruitment and growth of filamentous algae, primarily red algae, whereas it had a negative effect on coralline algae. The sediments found on the plates did not significantly change the macroalgal structure (P>0.05). However, a trend was observed in the change of the algal cover in each treatment. These results indicate that there is a wide range of response of the algae depending on the functional groups and the nature of the sediment.

Downloads

Download data is not yet available.

References

Acosta-González G., Rodríguez-Zaragoza F.A., Hernández-Landa R.C., et al. 2013. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition. PLoS ONE 8: e65665. https://doi.org/10.1371/journal.pone.0065665 PMid:23776521 PMCid:PMC3679153

Airoldi L. 2003. The effects of sedimentation on rocky coast assemblages. Oceanogr. Mar. Biol. Annu. Rev. 41:169-171. https://doi.org/10.1201/9780203180570-23

Airoldi L., Cinelli F. 1997. Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a Mediterranean rocky shore. J. Exp. Mar. Biol. Ecol. 215: 269-288. https://doi.org/10.1016/S0022-0981(96)02770-0

Álvarez A.M., Bernal G.R. 2007. Estimación del campo de transporte neto de sedimentos en el fondo de Bahía Colombia con base en análisis de tendencia del tamaño de grano. Avances en recursos hidráulico 16: 41-50.

Andrade C. 1993. Análisis de la velocidad del viento en el mar Caribe. Bol. Cient. CIOH 13: 33-44. https://doi.org/10.26640/22159045.53

Arroyave-Rincón A., Blanco J.F., Taborda A. 2012. Exportación de sedimentos desde cuencas hidrográficas de la vertiente oriental del golfo de Urabá: influencias climáticas y antrópicas. Rev. Ing. Univ. Med. 11:13-30.

Babcock R., Smith L. 2002. Effects of sedimentation on coral settlement and survivorship. Proc. 9th Inter. Coral Reef Symposium, Bali, 23-27 October 2000.

Balata D., Piazzi L., Cinelli F. 2007. Increase of sedimentation in a subtidal system: effects on the structure and diversity of macroalgal assemblages. J. Exp. Mar. Biol. Ecol. 351: 73-82. https://doi.org/10.1016/j.jembe.2007.06.019

Barlow J., França F., Gardner T.A., et al. 2018. The future of hyperdiverse tropical ecosystems. Nature 559: 517-526. https://doi.org/10.1038/s41586-018-0301-1 PMid:30046075

Bégin C., Schelten CK, Nugues M.M., et al. 2016. Effects of protection and sediment stress on coral reefs in Saint Lucia. PLoS ONE 11: e0146855. https://doi.org/10.1371/journal.pone.0146855 PMid:26845451 PMCid:PMC4742058

Bernal G., Montoya L.J., Garizábal C., et al. 2005. La complejidad de la dimensión física en la problemática costera del golfo de Urabá, Colombia. Gestión y Ambiente 8: 123-135.

Birrell C.L., McCook L.J., Willis B.L. 2005. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51: 408-414. https://doi.org/10.1016/j.marpolbul.2004.10.022 PMid:15757739

Buddemeier R.W., Kleypas J.A., Aronson R.B. 2004. Coral reefs & global climate change. Potential contributions of climate change to stress on coral reef ecosystems. Pew Center on Global Climate Change, Virginia, USA, 44 pp.

Cetz-Navarro N.P., Quan-Young L.I., Espinoza-Avalos J. 2015. Morphological and community changes of turf algae in competition with corals. Sci. Rep. 5: 12814 https://doi.org/10.1038/srep12814 PMid:26244816 PMCid:PMC4525492

Cheal A.J., MacNeil M.A., Cripps E., et al. 2010. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29: 1005-1015. https://doi.org/10.1007/s00338-010-0661-y

Chevillot P., Molina A., Giraldo L., et al. 1993. Estudio geológico e hidrológico del golfo de Urabá. Bol. cient. CIOH 14: 79-90. https://doi.org/10.26640/22159045.62

D'Antonio C.M. 1986. Role of sand in the domination of hard substrata by the intertidal alga Rhodomela larix. Mar. Ecol. Prog. Ser. 27: 263-275. https://doi.org/10.3354/meps027263

Díaz J.M., Sánchez J.A., Díaz-Pulido G. 1996. Geomorfología y formaciones arrecifales recientes de Isla Fuerte y Bajo Bushnell, plataforma continental del Caribe colombiano. Bol. Inv. Mar. Cost. 25: 87-105. https://doi.org/10.25268/bimc.invemar.1996.25.0.372

Díaz-Pulido G., McCook L.J. 2004. Effects of live coral, epilithic algal communities and substrate type on algal recruitment. Coral Reefs 23: 225-233. https://doi.org/10.1007/s00338-004-0370-5

Díaz-Pulido G., McCook L.J., Dove S., et al. 2009. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS ONE 4: e5239. https://doi.org/10.1371/journal.pone.0005239 PMid:19384423 PMCid:PMC2668766

Doropoulos C., Díaz-Pulido G. 2013. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser. 475: 93-99. https://doi.org/10.3354/meps10096

Eriksson B.K., Johansson G. 2005. Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia 143: 438-448. https://doi.org/10.1007/s00442-004-1810-1 PMid:15682344

Espinace R. 1979. Analisis granulometrico por tamizado. Manual de laboratorio de granulometria. Universidad Católica de Valparaíso, Chile.

Fabricius K.E. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Poll. Bull. 50: 125-146. https://doi.org/10.1016/j.marpolbul.2004.11.028 PMid:15737355

Fabricius K., De'Ath G. 2001. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19: 303-309. https://doi.org/10.1007/s003380000120

Florez-Leiva L., Rangel-Campo A., Díaz-Ruiz M., et al. 2009. Respuesta de las especies macroalgales a las adiciones de varios tipos de sedimentos: un bioensayo en arrecifes del Parque Nacional Natural Tayrona. Rev. Intrópica 4: 111-119.

Florez-Leiva L., Rangel-Campo A., Díaz-Ruiz M., et al. 2010. Efecto de la sedimentación en el reclutamiento de las macroalgas Dictyota spp. y Lobophora variegata: un estudio experimental en el Parque Nacional Natural Tayrona, Caribe colombiano. Bol. Inv. Mar. Cost. 39: 41-56. https://doi.org/10.25268/bimc.invemar.2010.39.1.141

García-Valencia C. 2007. Atlas del Golfo de Urabá: una mirada al Caribe de Antioquia y Chocó. Santa Marta, Colombia: INVEMAR. 188 pp.

García C.B., Díaz-Pulido G. 2006. Dynamics of a macroalgal rocky intertidal community in the Colombian Caribbean. Bol. Inv. Mar. Cost. 35: 7-18. https://doi.org/10.25268/bimc.invemar.2006.35.0.213

Garzón-Ferreira J., Gil-Agudelo D., Marin B., et al. 2000. Evaluación preliminar de algunos indicadores de contaminación de origen terrestre en áreas coralinas de la región de Santa Marta, Caribe colombiano. Informe de Resultados, pp. 55.

Hay M.E. 1997. The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16: 67-76. https://doi.org/10.1007/s003380050243

Hughes T.P., Barnes M.L., Bellwood D. R., et al. 2017. Coral reefs in the Anthropocene. Nature 546: 82-90. https://doi.org/10.1038/nature22901 PMid:28569801

Jones R.J., Bessel-Browne P., Fisher R., et al. 2016. Assessing the impacts of sediments on corals. Mar. Pollut. Bull. 102: 9-29. https://doi.org/10.1016/j.marpolbul.2015.10.049 PMid:26654296

Kendrick G.A. 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J. Exp. Mar. Biol. Ecol. 147: 47-63. https://doi.org/10.1016/0022-0981(91)90036-V

Kroon F.J., Kuhnert P.M., Henderson B.L., et al. 2012. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Mar. Pollut. Bull. 65: 167-181. https://doi.org/10.1016/j.marpolbul.2011.10.018 PMid:22154273

Lapointe B.E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms and coral reefs. Limnol. Oceanogr. 44:1586-1592. https://doi.org/10.4319/lo.1999.44.6.1586

Littler M.M., Arnold K.E. 1982. Primary productivity of marine macroalgal functional form groups from southwestern North America. J. Phycol. 18: 307-311. https://doi.org/10.1111/j.1529-8817.1982.tb03188.x

Littler M.M., Littler D.S. 1980. The evolutions of thallus form and survival strategies in benthic marine macroalgae: field and laboratory test of and functional: forms model. Am. Nat. 116: 25-44. https://doi.org/10.1086/283610

Littler D.S., Littler M.M. 2000. Caribbean Reef Plants. OffShore Graphics, Inc., Washington, D. C., 542 pp.

Lonin S., Vásquez J. 2005. Hidrodinámica y distribución de coliformes en el golfo de Urabá. Bol. Cient. CIOH 23: 76-89. https://doi.org/10.26640/22159045.140

López-Jiménez I.T., Flórez-Leiva L., Quan-Young L.I. 2020. Influencia de la herbivoría sobre la interacción alga-coral en un arrecife coralino de bahía Capurganá, Caribe colombiano. Rev. Biol. Trop. 68: 729-742. https://doi.org/10.15517/rbt.v68i3.38760

Márquez J.C., Díaz J.M. 2005. Interacciones entre corales y macroalgas: dependencia de las especies involucradas. Bol. Inves. Mar. Cost. 34: 227-242. https://doi.org/10.25268/bimc.invemar.2005.34.0.242

Mumby P.J., Hastings A., Edwards H.J. 2007. Thresholds and the resilience of Caribbean coral reefs. Nature 450: 98-101. https://doi.org/10.1038/nature06252 PMid:17972885

Orpin A., Ridd P. 2012. Exposure of inshore corals to suspended sediments due to wave resuspension and river plumes in the central Great Barrier Reef: a reappraisal. Cont. Shelf Res. 47: 55-67 https://doi.org/10.1016/j.csr.2012.06.013

Poveda G. 2004. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Acad. Col. Cien. 28: 201-222.

Purcell S., Bellwood D. 2001. Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20: 117-125. https://doi.org/10.1007/s003380100150

Quan-Young L.I., Espinoza-Avalos J. 2006. Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scleractinia) when competing with mixed turf algae. Limnol. Oceanogr. 51: 1159-1166. https://doi.org/10.4319/lo.2006.51.2.1159

Rendis A.M., Acosta-González G., Hernández‐Stefanoni J.L., et al. 2016. Quantifying the reefscape transformation of a coastal Caribbean coral reef during a phase shift and the associated coastal landscape change. Mar. Ecol. 37: 697-710. https://doi.org/10.1111/maec.12334

Reyes J., Santodomingo N., Flórez P. 2010. Corales escleractinios de Colombia. INVEMAR, Serie de Publicaciones Especiales, No. 14. Santa Marta, 246 pp.

Ricardo G.F., Jones R.J., Nordborg M., et al. 2017. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci. Total Environ. 609: 277-288. https://doi.org/10.1016/j.scitotenv.2017.07.153 PMid:28750231

Smith S.J., Friedrichs C.T. 2011. Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont. Shelf Res. 31: S50-S63. https://doi.org/10.1016/j.csr.2010.04.002

Tebbett S.B., Bellwood D.R., Purcell S.W. 2018. Sediment addition drives declines in algal turf yield to herbivorous coral reef fishes: implications for reefs and reef fisheries. Coral Reefs 37: 929-937. https://doi.org/10.1007/s00338-018-1718-6

Weber M., de Beer D., Lott C., et al. 2012. Mechanisms of damage to corals exposed to sedimentation. Proc. Natl. Acad. Sci. 109: E1558-E1567. https://doi.org/10.1073/pnas.1100715109 PMid:22615403 PMCid:PMC3386076

Published

2021-06-11

How to Cite

1.
López-Jiménez IT, Quan-Young LI, Florez-Leiva L. Effect of terrigenous sediments on macroalgae functional-form groups of coral reefs in Capurganá, Colombian Caribbean. scimar [Internet]. 2021Jun.11 [cited 2021Oct.17];85(2):125-3. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1901

Issue

Section

Articles