Behaviour and body patterns of Octopus vulgaris facing a baited trap: first-capture assessment




common octopus, skin displays, ethology, personality, vulnerability, fisheries management


This study highlights for the first time individual differences in ethology and vulnerability of Octopus vulgaris (i.e. body postures, movements and skin displays) facing passive baited traps. Common octopus exposed to a baited trap during three consecutive first-capture tests exhibited diverse behavioural and body pattern sequences resembling when the octopus searches for and hunts its wild prey. Overall, they first visually recognized new objects or potential preys and rapidly moved out of the den, exploring, grabbing and approaching the trap with the arms (chemotactile exploration), and capturing the bait with the arms and feeding on top over long periods inside the trap. Simultaneously, O. vulgaris displayed diverse skin textural and chromatic signs, the regular pattern being the most frequent and long-lasting, followed by broad mottle, passing cloud and dark patterns. All individuals (n=8) caught the bait at least once, although only five octopuses (62.5%) entered the trap in all three tests. In addition, high variability among individuals was observed regarding behaviour and body patterns during the first-capture tests, which might evidence different individual temperaments or life-history traits. Differences in behavioural responses at individual level might have population consequences due to fisheries-induced selection, although there is a high necessity to assess how behavioural traits might play an important role in life-history traits of this species harvested by small-scale trap fisheries.


Download data is not yet available.


Amodio P., Andrews P., Salemme M., et al. 2014. The use of artificial crabs for testing predatory behavior and health in the octopus. ALTEX - Alternatives Anim. Experiment. 31: 494-499.

Amor M.D., Norman M.D., Roura A., et al. 2017. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular‐based phylogenetic inferences. Zool. Script. 46: 275-288.

Arechavala-Lopez P., Minguito-Frutos M., Follana-Berná G., et al. 2018. Common octopus settled in human-altered Mediterranean coastal waters: from individual home range to population dynamics. ICES J. Mar. Sci. 76: 585-597.

Arlinghaus R., Laskowski K.L., Alós J., et al. 2017. Passive gearinduced timidity syndrome in wild fish populations and its potential ecological and managerial implications. Fish Fish. 18: 360-373.

Arreguín-Sánchez F. 1996. Catchability: a key parameter for fish stock assessment. Rev Fish Biol Fish. 6: 221-242.

Bañón R., Otero J., Campelos-Álvarez J.M., et al. 2018. The traditional small-scale octopus trap fishery off the Galician coast (Northeastern Atlantic): Historical notes and current fishery dynamics. Fish. Res. 206: 115-128.

Borrelli L., Gherardi F., Fiorito G. 2006. A catalogue of body patterning in cephalopoda. Firenze University Press. Firenze, Italy.

Brockmann H.J. 1994. Measuring behaviour: Ethograms, kinematic diagrams, and time budgets. Technical document, Department of Biology, University of Florida, USA.

Conrad J.L., Weinersmith K.L., Brodin T., et al. 2011. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J. Fish Biol. 78: 395-435.

Cox S.P., Walters C. 2002. Modeling Exploitation in Recreational Fisheries and Implications for Effort Management on British Columbia Rainbow Trout Lakes. North Am J Fis. Manag. 22: 21-34.

Diaz-Pauli B., Wiech M., Heino M., et al. 2015. Opposite selection on behavioral types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery. J.Fish Biol. 86: 1030-1045.

De Luca D., Catanese G., Procaccini G., et al. 2016. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PloS ONE, 11: e0149496.

Dochtermann N.A., Schwab T., Sih A. 2015. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. Biol. Sci. 282: 20142201.

Enberg K., Jørgensen C., Dunlop E.S., et al. 2012. Fishing‐induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33: 1-25.

Erzini K., Bentes L., Coelho R., et al. 2008. Catches in ghost-fishing octopus and fish traps in the northeastern Atlantic Ocean (Algarve, Portugal). Fish. Bull. 106: 321-327.

FAO. 2020. Fisheries and Aquaculture Information and Statistics Branch - 16/09/2020. FAO Ed.

Fiorito G., Gherardi F. 1999. Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behav. Proc. 46: 75-88.

Fiorito G., von Planta C., Scotto P. 1990. Problem solving ability of Octopus vulgaris lamarck (Mollusca, Cephalopoda). Behav. Neur. Biol. 53: 217-230.

Fiorito G., Affuso A., Basil J., et al. 2015. Guidelines for the care and welfare of Cephalopods in research ─A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory Animals, 49: 1-90.

Fuentes L., Iglesias J. 2010. Release experiments with Octopus vulgaris Cuvier, 1797 in Galicia, NW Spain. First results on recapture rate, distribution and growth. Vie et Milieu 60: 65-71.

Guerra Á., Hernández-Urcera J., Garci M.E., et al. 2014. Dwellers in dens on sandy bottoms: Ecological and behavioural traits of Octopus vulgaris. Sci. Mar. 78: 405-414.

Guerra Á., Hernández-Urcera J., Garci M.E., et al. 2015. Spawning habitat selection by Octopus vulgaris: new insights for a more effective management of this resource. Fish. Res. 167: 313-322.

Hanlon R.T., Messenger J.B. 2018. Cephalopod behaviour. Cambridge University Press.

Heino M., Pauli B.D. Dieckmann U. 2015. Fisheries-induced evolution. Ann. Rev. Ecol. Evol. System. 46: 461-480.

Jereb P., Allcock L.A., Lefkaditou E., et al. 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES.

Katsanevakis S., Verriopoulos G. 2004a. Abundance of Octopus vulgaris on soft sediment. Sci. Mar. 68: 553-560.

Katsanevakis S., Verriopoulos G. 2004b. Den ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: availability and types of shelter. Sci. Mar. 68: 147-157.

Kortet R., Vainikka A., Janhunen M., et al. 2014. Behavioral variation shows heritability in juvenile brown trout Salmo trutta. Behav Ecol Sociobiol. 68: 927-934.

Kruschke J. 2014. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.

Lennox R.J., Alós J., Arlinghaus R., et al. 2017. What makes fish vulnerable to capture by hooks? A conceptual framework and a review of key determinants. Fish Fish. 18: 986-1010.

Maldonado H. 1964. The control of attack by Octopus. J. Comp. Physiol. A: Neuroethol. Sensor. Neur. Behav. Physiol. 47: 656-674.

Mather J.A. 1991a. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. 224: 27-39.

Mather J.A. 1991b. Navigation by spatial memory and use of visual landmarks in octopuses. J. Comp. Physiol. A: Neuroethol. Sensor. Neur. Behav. Physiol. 168: 491-497.

Mather J.A., Alupay J.S. 2016. An ethogram for Benthic Octopods (Cephalopoda: Octopodidae). J. Comp. Psychol. 130: 109-127.

Mather J.A., Anderson R.C. 1993. Personalities of octopuses (Octopus rubescens). J. Comp. Psychol. 107(3): 336-340.

Mather J.A., O’Dor R.K. 1991. Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bul. Mar. Sci. 49: 256-269.

Mereu M., Agus B., Addis P., et al. 2015. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470: 64-69.

Mittelbach G.G., Ballew N.G., Kjelvik M.K. 2014. Fish behavioral types and their ecological consequences. Can. J. Fish. Aqua. Sci. 71: 927-944.

Packard A. 1963. The behaviour of Octopus vulgaris. Bull. Inst. Oceanogr. (Monaco) D 1: 35-49.

Packard A. 1972. Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241-307.

Packard A., Sanders G.D. 1971. Body patterns of Octopus vulgaris and maturation of the response to disturbance. Anim. Behav. 19: 780-790.

Pierce G.J., Allcock L., Bruno I., et al. 2010. Cephalopod biology and fisheries in Europe. ICES.

Piéron H. 1911. Contribution a la psychologie du poulpe. Bull. l’Inst. Gén. Psychol. 11: 111-119.

Pita C., Pereira J., Lourenço S., et al. 2015. The traditional small-scale octopus fishery in Portugal: framing its governability. In: Interactive Governance for Small-Scale Fisheries. Springer, Cham. pp. 117-132.

Plummer M. 2015. JAGS Version 4.0.0 user manual 0-42.

Pronk R., Wilson D.R., Harcourt R. 2010. Video playback demonstrates episodic personality in the gloomy octopus. J Exp Biol. 213: 1035-1041.

R Core Team. 2020. R: A Language and Environment for Statistical Computing.

Sauer W.H.H., Gleadall I.G., Downey-Breedt N., et al. 2020. World Octopus Fisheries. Rev. Fish. Sci. Aquacult.

Sillero-Rios J., Sureda A., Capó X., et al. 2018. Biomarkers of physiological responses of Octopus vulgaris to different coastal environments in the western Mediterranean Sea. Mar. Pol. Bul. 128: 240-247.

Sinn D.L., Perrin N.A., Mather J.A., et al. 2001. Early temperamental traits in an octopus (Octopus bimaculoides). J.Comp. Psychol. 115: 351.

Su Y.-S., Yajima M. 2015. R2jags: Using R to Run ‘JAGS’. R package version 0.5-7. Available:

Uusi-Heikkilä S., Wolter C., Klefoth T., et al. 2008. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23: 419-421.

Van Buskirk J. 2002. A comparative test of the adaptive plasticity hypothesis: relationships between habitat and phenotype in anuran larvae. The Am. Natur. 160: 87-102.



How to Cite

Dominguez-Lopez M, Follana-Berná G, Arechavala-Lopez P. Behaviour and body patterns of Octopus vulgaris facing a baited trap: first-capture assessment. scimar [Internet]. 2021Apr.20 [cited 2021Aug.3];85(1):29-38. Available from: