Behaviour and body patterns of Octopus vulgaris facing a baited trap: first-capture assessment

Authors

DOI:

https://doi.org/10.3989/scimar.05065.003

Keywords:

common octopus, skin displays, ethology, personality, vulnerability, fisheries management

Abstract


This study highlights for the first time individual differences in ethology and vulnerability of Octopus vulgaris (i.e. body postures, movements and skin displays) facing passive baited traps. Common octopus exposed to a baited trap during three consecutive first-capture tests exhibited diverse behavioural and body pattern sequences resembling when the octopus searches for and hunts its wild prey. Overall, they first visually recognized new objects or potential preys and rapidly moved out of the den, exploring, grabbing and approaching the trap with the arms (chemotactile exploration), and capturing the bait with the arms and feeding on top over long periods inside the trap. Simultaneously, O. vulgaris displayed diverse skin textural and chromatic signs, the regular pattern being the most frequent and long-lasting, followed by broad mottle, passing cloud and dark patterns. All individuals (n=8) caught the bait at least once, although only five octopuses (62.5%) entered the trap in all three tests. In addition, high variability among individuals was observed regarding behaviour and body patterns during the first-capture tests, which might evidence different individual temperaments or life-history traits. Differences in behavioural responses at individual level might have population consequences due to fisheries-induced selection, although there is a high necessity to assess how behavioural traits might play an important role in life-history traits of this species harvested by small-scale trap fisheries.

Downloads

Download data is not yet available.

References

Amodio P., Andrews P., Salemme M., et al. 2014. The use of artificial crabs for testing predatory behavior and health in the octopus. ALTEX - Alternatives Anim. Experiment. 31: 494-499. https://doi.org/10.14573/altex.1401282 PMid:24919978

Amor M.D., Norman M.D., Roura A., et al. 2017. Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular‐based phylogenetic inferences. Zool. Script. 46: 275-288. https://doi.org/10.1111/zsc.12207

Arechavala-Lopez P., Minguito-Frutos M., Follana-Berná G., et al. 2018. Common octopus settled in human-altered Mediterranean coastal waters: from individual home range to population dynamics. ICES J. Mar. Sci. 76: 585-597. https://doi.org/10.1093/icesjms/fsy014

Arlinghaus R., Laskowski K.L., Alós J., et al. 2017. Passive gearinduced timidity syndrome in wild fish populations and its potential ecological and managerial implications. Fish Fish. 18: 360-373. https://doi.org/10.1111/faf.12176

Arreguín-Sánchez F. 1996. Catchability: a key parameter for fish stock assessment. Rev Fish Biol Fish. 6: 221-242. https://doi.org/10.1007/BF00182344

Bañón R., Otero J., Campelos-Álvarez J.M., et al. 2018. The traditional small-scale octopus trap fishery off the Galician coast (Northeastern Atlantic): Historical notes and current fishery dynamics. Fish. Res. 206: 115-128. https://doi.org/10.1016/j.fishres.2018.05.005

Borrelli L., Gherardi F., Fiorito G. 2006. A catalogue of body patterning in cephalopoda. Firenze University Press. Firenze, Italy. https://doi.org/10.36253/88-8453-376-7

Brockmann H.J. 1994. Measuring behaviour: Ethograms, kinematic diagrams, and time budgets. Technical document, Department of Biology, University of Florida, USA.

Conrad J.L., Weinersmith K.L., Brodin T., et al. 2011. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J. Fish Biol. 78: 395-435. https://doi.org/10.1111/j.1095-8649.2010.02874.x PMid:21284626

Cox S.P., Walters C. 2002. Modeling Exploitation in Recreational Fisheries and Implications for Effort Management on British Columbia Rainbow Trout Lakes. North Am J Fis. Manag. 22: 21-34. https://doi.org/10.1577/1548-8675(2002)022<0021:MEIRFA>2.0.CO;2

Diaz-Pauli B., Wiech M., Heino M., et al. 2015. Opposite selection on behavioral types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery. J.Fish Biol. 86: 1030-1045. https://doi.org/10.1111/jfb.12620 PMid:25619538

De Luca D., Catanese G., Procaccini G., et al. 2016. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PloS ONE, 11: e0149496. https://doi.org/10.1371/journal.pone.0149496 PMid:26881847 PMCid:PMC4755602

Dochtermann N.A., Schwab T., Sih A. 2015. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. Biol. Sci. 282: 20142201. https://doi.org/10.1098/rspb.2014.2201 PMid:25392476 PMCid:PMC4262176

Enberg K., Jørgensen C., Dunlop E.S., et al. 2012. Fishing‐induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33: 1-25. https://doi.org/10.1111/j.1439-0485.2011.00460.x

Erzini K., Bentes L., Coelho R., et al. 2008. Catches in ghost-fishing octopus and fish traps in the northeastern Atlantic Ocean (Algarve, Portugal). Fish. Bull. 106: 321-327.

FAO. 2020. Fisheries and Aquaculture Information and Statistics Branch - 16/09/2020. FAO Ed.

Fiorito G., Gherardi F. 1999. Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behav. Proc. 46: 75-88. https://doi.org/10.1016/S0376-6357(99)00020-0

Fiorito G., von Planta C., Scotto P. 1990. Problem solving ability of Octopus vulgaris lamarck (Mollusca, Cephalopoda). Behav. Neur. Biol. 53: 217-230. https://doi.org/10.1016/0163-1047(90)90441-8

Fiorito G., Affuso A., Basil J., et al. 2015. Guidelines for the care and welfare of Cephalopods in research ─A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory Animals, 49: 1-90. https://doi.org/10.1177/0023677215580006 PMid:26354955

Fuentes L., Iglesias J. 2010. Release experiments with Octopus vulgaris Cuvier, 1797 in Galicia, NW Spain. First results on recapture rate, distribution and growth. Vie et Milieu 60: 65-71.

Guerra Á., Hernández-Urcera J., Garci M.E., et al. 2014. Dwellers in dens on sandy bottoms: Ecological and behavioural traits of Octopus vulgaris. Sci. Mar. 78: 405-414. https://doi.org/10.3989/scimar.04071.28F

Guerra Á., Hernández-Urcera J., Garci M.E., et al. 2015. Spawning habitat selection by Octopus vulgaris: new insights for a more effective management of this resource. Fish. Res. 167: 313-322. https://doi.org/10.1016/j.fishres.2015.03.011

Hanlon R.T., Messenger J.B. 2018. Cephalopod behaviour. Cambridge University Press. https://doi.org/10.1017/9780511843600

Heino M., Pauli B.D. Dieckmann U. 2015. Fisheries-induced evolution. Ann. Rev. Ecol. Evol. System. 46: 461-480. https://doi.org/10.1146/annurev-ecolsys-112414-054339

Jereb P., Allcock L.A., Lefkaditou E., et al. 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES.

Katsanevakis S., Verriopoulos G. 2004a. Abundance of Octopus vulgaris on soft sediment. Sci. Mar. 68: 553-560. https://doi.org/10.3989/scimar.2004.68n4553

Katsanevakis S., Verriopoulos G. 2004b. Den ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: availability and types of shelter. Sci. Mar. 68: 147-157. https://doi.org/10.3989/scimar.2004.68n1147

Kortet R., Vainikka A., Janhunen M., et al. 2014. Behavioral variation shows heritability in juvenile brown trout Salmo trutta. Behav Ecol Sociobiol. 68: 927-934. https://doi.org/10.1007/s00265-014-1705-z

Kruschke J. 2014. Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press. https://doi.org/10.1016/B978-0-12-405888-0.00008-8

Lennox R.J., Alós J., Arlinghaus R., et al. 2017. What makes fish vulnerable to capture by hooks? A conceptual framework and a review of key determinants. Fish Fish. 18: 986-1010. https://doi.org/10.1111/faf.12219

Maldonado H. 1964. The control of attack by Octopus. J. Comp. Physiol. A: Neuroethol. Sensor. Neur. Behav. Physiol. 47: 656-674. https://doi.org/10.1007/BF00303314

Mather J.A. 1991a. Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). J. Zool. 224: 27-39. https://doi.org/10.1111/j.1469-7998.1991.tb04786.x

Mather J.A. 1991b. Navigation by spatial memory and use of visual landmarks in octopuses. J. Comp. Physiol. A: Neuroethol. Sensor. Neur. Behav. Physiol. 168: 491-497. https://doi.org/10.1007/BF00199609

Mather J.A., Alupay J.S. 2016. An ethogram for Benthic Octopods (Cephalopoda: Octopodidae). J. Comp. Psychol. 130: 109-127. https://doi.org/10.1037/com0000025 PMid:27078075

Mather J.A., Anderson R.C. 1993. Personalities of octopuses (Octopus rubescens). J. Comp. Psychol. 107(3): 336-340. https://doi.org/10.1037/0735-7036.107.3.336

Mather J.A., O'Dor R.K. 1991. Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. Bul. Mar. Sci. 49: 256-269.

Mereu M., Agus B., Addis P., et al. 2015. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470: 64-69. https://doi.org/10.1016/j.jembe.2015.05.007

Mittelbach G.G., Ballew N.G., Kjelvik M.K. 2014. Fish behavioral types and their ecological consequences. Can. J. Fish. Aqua. Sci. 71: 927-944. https://doi.org/10.1139/cjfas-2013-0558

Packard A. 1963. The behaviour of Octopus vulgaris. Bull. Inst. Oceanogr. (Monaco) D 1: 35-49.

Packard A. 1972. Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241-307. https://doi.org/10.1111/j.1469-185X.1972.tb00975.x

Packard A., Sanders G.D. 1971. Body patterns of Octopus vulgaris and maturation of the response to disturbance. Anim. Behav. 19: 780-790. https://doi.org/10.1016/S0003-3472(71)80181-1

Pierce G.J., Allcock L., Bruno I., et al. 2010. Cephalopod biology and fisheries in Europe. ICES.

Piéron H. 1911. Contribution a la psychologie du poulpe. Bull. l'Inst. Gén. Psychol. 11: 111-119.

Pita C., Pereira J., Lourenço S., et al. 2015. The traditional small-scale octopus fishery in Portugal: framing its governability. In: Interactive Governance for Small-Scale Fisheries. Springer, Cham. pp. 117-132. https://doi.org/10.1007/978-3-319-17034-3_7

Plummer M. 2015. JAGS Version 4.0.0 user manual 0-42.

Pronk R., Wilson D.R., Harcourt R. 2010. Video playback demonstrates episodic personality in the gloomy octopus. J Exp Biol. 213: 1035-1041. https://doi.org/10.1242/jeb.040675 PMid:20228339

R Core Team. 2020. R: A Language and Environment for Statistical Computing.

Sauer W.H.H., Gleadall I.G., Downey-Breedt N., et al. 2020. World Octopus Fisheries. Rev. Fish. Sci. Aquacult.

Sillero-Rios J., Sureda A., Capó X., et al. 2018. Biomarkers of physiological responses of Octopus vulgaris to different coastal environments in the western Mediterranean Sea. Mar. Pol. Bul. 128: 240-247. https://doi.org/10.1016/j.marpolbul.2018.01.032 PMid:29571370

Sinn D.L., Perrin N.A., Mather J.A., et al. 2001. Early temperamental traits in an octopus (Octopus bimaculoides). J.Comp. Psychol. 115: 351. https://doi.org/10.1037/0735-7036.115.4.351 PMid:11824898

Su Y.-S., Yajima M. 2015. R2jags: Using R to Run 'JAGS'. R package version 0.5-7. Available: https://cran.r-project.org/web/packages/R2jags/index.html

Uusi-Heikkilä S., Wolter C., Klefoth T., et al. 2008. A behavioral perspective on fishing-induced evolution. Trends Ecol. Evol. 23: 419-421. https://doi.org/10.1016/j.tree.2008.04.006 PMid:18582988

Van Buskirk J. 2002. A comparative test of the adaptive plasticity hypothesis: relationships between habitat and phenotype in anuran larvae. The Am. Natur. 160: 87-102. https://doi.org/10.1086/340599 PMid:18707501

Published

2021-04-20

How to Cite

1.
Dominguez-Lopez M, Follana-Berná G, Arechavala-Lopez P. Behaviour and body patterns of Octopus vulgaris facing a baited trap: first-capture assessment. Sci. mar. [Internet]. 2021Apr.20 [cited 2024Mar.19];85(1):29-38. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1889

Issue

Section

Articles