Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site
DOI:
https://doi.org/10.3989/scimar.04480.06EKeywords:
coastal time-series station, primary production, seasonality, photosynthetic parameters, PBmax, αBAbstract
We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1), averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE) and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1)–1 (±0.001 SE, range 0.001-0.045) and showed the lowest values in spring (April-June). The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (± 58.4 SE) and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m-3 h–1 (±0.13 SE) with highest values in winter (up to 8.50 mg C m-3 h–1) and lowest values in summer (summer average, 0.30 mg C m-3 h–1), while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE) and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August). 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while phytoplankton composition played a minor role. Daily integrated primary production was fairly constant throughout the year: similar to previous oxygen-based estimates in winter but considerably lower than these in summer. The difference between 14C- and oxygen-based estimates of primary production could be explained by community respiration. Annually integrated primary production amounted to a rather modest 48 g C m–2 yr–1 (equivalent to 130 mg C m–2 d–1). Although no interannual patterns were detected, our work soundly establishes the seasonal trends for the coastal NW Mediterranean, therefore setting the basis for future detection of change.
Downloads
References
Acevedo-Trejos E., Brandt G., Steinacher M., et al. 2014. A glimpse into the future composition of marine phytoplankton communities. Front. Mar. Sci. 1: 15. http://dx.doi.org/10.3389/fmars.2014.00015
Alonso-Sáez L., Balagué V., Sà E.L., et al. 2007. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol. Ecol. 60: 98-112. http://dx.doi.org/10.1111/j.1574-6941.2006.00276.x PMid:17250750
Alonso-Sáez L., Vázquez-Domínguez E., Cardelús C., et al. 2008. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11: 397-409. http://dx.doi.org/10.1007/s10021-008-9129-0
Arin L., Morán X.A.G., Estrada M. 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): Short term variability related to mesoscale hydrodynamics. J. Plank. Res. 24: 1019-1033. http://dx.doi.org/10.1093/plankt/24.10.1019
Azov Y. 1986. Seasonal patterns of phytoplankton productivity and abundance in nearshore oligotrophic waters of the Levant Basin (Mediterranean). J. Plankton Res. 8: 41-53. http://dx.doi.org/10.1093/plankt/8.1.41
Babin M., Morel A., Claustre H., et al. 1996. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep-Sea Res. 43: 1241-1272. http://dx.doi.org/10.1016/0967-0637(96)00058-1
Baines S.B., Pace M.L., Karl D.M. 1994. Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans? Limnol. Oceanogr. 39: 213-226. http://dx.doi.org/10.4319/lo.1994.39.2.0213
Basterretxea G., Arístegui J. 2000. Mesoscale variability in phytoplankton biomass distribution and photosynthetic parameters in the Canary-NW African coastal transition zone. Mar. Ecol. Prog. Ser. 197: 27-40. http://dx.doi.org/10.3354/meps197027
Behrenfeld M.J., Prasil O., Babin M., et al. 2004. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J. Phycol. 40: 4-25. http://dx.doi.org/10.1046/j.1529-8817.2004.03083.x
Berman T., Townsend D.W., El Sayed S.Z., et al. 1984. Optical transparency, chlorophyll and primary productivity in the Eastern Mediterranean near the Israeli coast. Oceanol. Acta, 7: 367-372.
Børsheim K.Y., Bratbak G. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175. http://dx.doi.org/10.3354/meps036171
Charles F., Lantoine F., Brugel S., et al. 2005. Seasonal survey of the phytoplankton biomass, composition and production in a littoral NW Mediterranean site, with special emphasis on the picoplanktonic contribution. Estuar. Coastal Shelf Sci. 65: 199-212. http://dx.doi.org/10.1016/j.ecss.2005.06.006
Claustre H., Moline M.A., Prézelin B.B. 1997. Sources of variability in the column photosynthetic cross section for Antarctic coastal waters. J. Geophys. Research- Oceans 102: 25047-25060.
Côté B., Platt T. 1983. Day-to-day variations in the spring- summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28: 320-344. http://dx.doi.org/10.4319/lo.1983.28.2.0320
Cullen J.J., Yang X., Macintyre H.L. 1992. Nutrient limitation and marine photosynthesis, In Falkowski P.G., Woodhead A.D. (eds), Primary productivity and biogeochemical cycles in the sea. Plenum, pp. 69-88. http://dx.doi.org/10.1007/978-1-4899-0762-2_5
de Lafontaine Y., Peters R.H. 1986. Empirical relationship for marine primary production-the effect of environmental variables. Oceanol. Acta 9: 65-72.
Duarte C.M., Agustí S., Vaqué D. 2004. Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnol. Oceanogr. 49: 2162-2170. http://dx.doi.org/10.4319/lo.2004.49.6.2162
Estrada M. 1996. Primary production in the northwestern Mediterranean. Sci. Mar. 60: 55-64.
Estrada M., Latasa M., Emelianov M., et al. 2014. Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean. Deep Sea Res. I 94: 45-61. http://dx.doi.org/10.1016/j.dsr.2014.08.003
Field C.B., Behrenfeld M.J., Randerson J.T., et al. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240. http://dx.doi.org/10.1126/science.281.5374.237 PMid:9657713
Finenko Z.Z., Churilova T.Y., Sosik H.M., et al. 2002. Variability of photosynthetic parameters of the surface phytoplankton in the Black Sea. Oceanology 42: 53-67.
Furuya K., Hasegawa O., Yoshikawa T., et al. 1998. Photosynthesis-irradiance relationship of phytoplankton and primary production in the vicinity of Kuroshio warm core ring in spring. J. Oceanogr. 54: 545-552. http://dx.doi.org/10.1007/BF02742456
Gallegos C. 2012. Phytoplankton photosynthetic capacity in a shallow estuary: environmental correlates and interannual variation. Mar. Ecol. Progr. Ser. 463: 3-37. http://dx.doi.org/10.3354/meps09850
Gameiro C., Zwolinski J., Brotas V. 2011. Light control on phytoplankton production in a shallow and turbid estuarine system. Hydrobiologia 669: 249-263. http://dx.doi.org/10.1007/s10750-011-0695-3
Gasol J.M., Duarte C.M. 2000. Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiol. Ecol. 31: 99-106. http://dx.doi.org/10.1111/j.1574-6941.2000.tb00675.x PMid:10640663
Gasol J.M., Massana R., Simó R., et al. 2012. Blanes Bay (Site 55). In: O'Brien T.D., Li W.K.W., Morán X.A.G. (eds), ICES Phytoplankton and Microbial Ecology Status Report 2010/2012. pp. 138-141.
Geider R.J., Macintyre H.L., Kana T.M. 1998. A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnol. Oceanogr. 43: 679-694. http://dx.doi.org/10.4319/lo.1998.43.4.0679
Guadayol Ò., Peters F., Marrasé C., et al. 2009. Episodic meteorological and nutrient load events as drivers of coastal planktonic ecosystem dynamics: a time series analysis. Mar. Ecol. Prog. Ser. 381: 139-155. http://dx.doi.org/10.3354/meps07939
Gutiérrez-Rodríguez A., Latasa M., Estrada M., et al. 2010. Carbon fluxes through major phytoplankton groups during the spring bloom and post-bloom in the Northwestern Mediterranean Sea. Deep Sea Res. I 57: 486-500. http://dx.doi.org/10.1016/j.dsr.2009.12.013
Gutiérrez-Rodríguez A., Latasa M., Scharek R., et al. 2011. Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site. Est. Coast. Shelf Sci. 95: 77-87. http://dx.doi.org/10.1016/j.ecss.2011.08.008
Hansen H., Koroleff F. 1999. Determination of nutrients. In: Grasshoff K., Kremling K., Ehrhardt M. (eds), Methods of Seawater Analysis. Wiley-VCH, Weinheim, pp 159-226. http://dx.doi.org/10.1002/9783527613984.ch10
Harding L.W., Prezelin B.B., Sweeney B.M., et al. 1982. Diel oscillations of the photosynthesis–irradiance (PI) relationship in natural assemblages of phytoplankton. Mar. Biol. 67: 167-178. http://dx.doi.org/10.1007/BF00401282
Jacques G. 1970. Aspects quantitatifs du phytoplancton de Banyuls-sur-mer (Golfe du Lion). Biomasse et production, 1956-1969. Vie Milieu ser. B 21: 37-102.
Karl D.M., Church M.J. 2014. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12: 699-713. http://dx.doi.org/10.1038/nrmicro3333 PMid:25157695
Keller A.A. 1988. An empirical model of primary productivity (14C) using mesocosm data along a nutrient gradient. J. Plankton Res. 10: 813-834. http://dx.doi.org/10.1093/plankt/10.4.813
Kirchman D.L. 2016. Growth rate of microbes in the oceans. Ann. Rev. Mar. Sci. 8: 285-309 http://dx.doi.org/10.1146/annurev-marine-122414-033938 PMid:26195108
Kirk J.T.O. 1994. Light and photosynthesis in aquatic ecosystems. 2nd Ed. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511623370
Kovac Z, Platt T., Sathyendranath S., et al. 2016. Recovery of photosynthesis parameters from in situ profiles of phytoplankton production. ICES J. Mar. Sci. 73: 275–285. http://dx.doi.org/10.1093/icesjms/fsv204
Kyewalyanga M.N., Platt T., Sathyendranath S., et al. 1998. Seasonal variations in physiological parameters of phytoplankton across the North Atlantic. J. Plankton Res. 20: 17-42. http://dx.doi.org/10.1093/plankt/20.1.17
Latasa M., Morán X.A.G., Scharek R., et al. 2005. Estimating the carbon flux through main phytoplankton groups in the northwestern Mediterranean. Limnol. Oceanogr. 50: 1447–1458. http://dx.doi.org/10.4319/lo.2005.50.5.1447
Lefevre D., Minas H.J., Minas M., et al. 1997. Review of gross community production, primary production, net community production and dark community respiration in the Gulf of Lions. Deep Sea Res. II 44: 801-832. http://dx.doi.org/10.1016/S0967-0645(96)00091-4
Lignell R., Seppälä J., Kuuppo P., et al. 2003. Beyond bulk properties: Responses of coastal summer plankton communities to nutrient enrichment in the northern Baltic Sea. Limnol. Oceanogr. 48: 189-209. http://dx.doi.org/10.4319/lo.2003.48.1.0189
Lucea A., Duarte C.M., Agustí S., et al. 2005. Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry. 73: 303-323. http://dx.doi.org/10.1007/s10533-004-0059-4
Mackas D.L., Thomson R.E., Galbraith M. 2001. Changes in the zooplankton community of the British Columbia continental margin, 1985-1999, and their covariation with oceanographic conditions. Can. J. Fish. Aquat. Sci. 58: 685-702. http://dx.doi.org/10.1139/f01-009
Mara-ón E. 2005. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr. 50: 299-310 . http://dx.doi.org/10.4319/lo.2005.50.1.0299
Mara-ón E., Holligan P.M. 1999. Photosynthetic parameters of phytoplankton from 50° N to 50° S in the Atlantic Ocean. Mar. Ecol. Prog. Ser. 176: 191-203. http://dx.doi.org/10.3354/meps176191
Mara-ón E., Behrenfeld M.J., González N., et al. 2003. High vari ability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257: 1-11. http://dx.doi.org/10.3354/meps257001
Mara-ón E., Cerme-o P., Huete-Ortega M., et al. 2014. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PloS One 9: e99312. http://dx.doi.org/10.1371/journal.pone.0099312 PMid:24921945 PMCid:PMC4055616
Margalef R. 1969. Composición específica del fitoplancton de la costa catalano-levantina (Mediterráneo Occidental) en 1962- 1967. Inv. Pesq. 33: 345-380.
Margalef R., Ballester A. 1967. Fitoplancton y producción primaria de la costa catalana, de junio de 1965 a junio de 1966. Inv. Pesq. 31: 165-182.
Margalef R., Castellví J. 1967. Fitoplancton y producción primaria de la costa catalana, de julio de 1966 a julio de 1967. Inv. Pesq. 31: 491-502.
Marra J. 2002. Approaches to the measurement of plankton production. In: Williams P.J. leB., Thomas D.N., Reynolds C.S. (eds), Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems, Oxford, UK, pp. 78-108. http://dx.doi.org/10.1002/9780470995204.ch4
Marty J.C., Chiavérini J. 2002. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. II 49: 2017-2030. http://dx.doi.org/10.1016/S0967-0645(02)00025-5
Masó M., Tintoré J. 1991. Variability of the shelf water off the northeast Spanish coast. J. Mar. Syst. 1: 441-450. http://dx.doi.org/10.1016/0924-7963(91)90008-I
Moigis A.G. 1999. Photosynthetic rates in the surface waters of the Red Sea: the radiocarbon versus the non-isotopic dilution method. J. Plankton Res. 22: 713-727. http://dx.doi.org/10.1093/plankt/22.4.713
Montagnes D.J.S., Berges J.A., Harrison P.J., et al. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060. http://dx.doi.org/10.4319/lo.1994.39.5.1044
Morán X.A.G. 2007. Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat. Microb. Ecol. 49: 267-277. http://dx.doi.org/10.3354/ame01151
Morán X.A.G., Estrada M. 2001. Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean). Mar. Ecol. Prog. Ser. 212: 53-66. http://dx.doi.org/10.3354/meps212053
Morán X.A.G., Estrada M. 2005. Winter pelagic photosynthesis in the NW Mediterranean. Deep-Sea Res. I 52: 1806-1822. http://dx.doi.org/10.1016/j.dsr.2005.05.009
Morán X.A.G., Scharek R. 2015. Photosynthetic parameters and primary production, with focus on large phytoplankton, in a temperate mid-shelf ecosystem, Est. Coast. Shelf Sci. 154: 255-263. http://dx.doi.org/10.1016/j.ecss.2014.12.047
Morán X.A.G., López-Urrutia A., Calvo-Díaz A., et al. 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16: 1137-1144 http://dx.doi.org/10.1111/j.1365-2486.2009.01960.x
O'Brien T.D. 2012. Time-series data analysis and visualization. In: O'Brien T.D., Li W.K.W., Morán X.A.G. (eds), ICES Phytoplankton and Microbial Ecology Status Report 2010/2012. ICES Cooperative Research Report. pp. 8-19. PMCid:PMC3626508
Oksanen J., Blanchet F.G., Kindt R., et al. 2016. vegan: Community Ecology Package. R package version 2.3-3.
Ondrusek M.E., Bidigare R.B., Waters K., et al. 2001. A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean. Deep-Sea Res. II 48: 1837-1863. http://dx.doi.org/10.1016/S0967-0645(00)00163-6
Peeters J.C.H., Haas H.A., Peperzak L., et al. 1991. Limiting factors for phytoplankton in the North Sea. Water Sci. Tech. 24: 261-267.
Peterson B.J. 1980. Aquatic primary production and the 14C-CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11: 359-385. http://dx.doi.org/10.1146/annurev.es.11.110180.002043
Pinhassi J., Gómez-Consarnau L., Alonso-Sáez L., et al. 2006. Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat. Microb. Ecol. 44: 241-252. http://dx.doi.org/10.3354/ame044241
Platt T., Sathyendranath S. 1993. Fundamental issues in measurement of primary production. ICES MSS, 197. 3-8
Platt T., Gallegos C.L., Harrison W.G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 687-701.
Pugnetti A., Camatti E., Mangoni O., et al. 2006. Phytoplankton production in Italian freshwater and marine ecosytems: State of the art and perspectives. Chemistry and Ecology 22 Suppl.1, S49-S69 http://dx.doi.org/10.1080/02757540600557330
R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Regaudie-de-Gioux A., Lasternas S., Agustí S., et al. 2014. Comparing marine primary production estimates through different methods and development of conversion equations. Front. Mar. Sci. 1: 19. http://dx.doi.org/10.3389/fmars.2014.00019
Romera-Castillo C., Álvarez-Salgado X.A., Galí M., et al. 2013. Combined effect of light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Mar. Chem. 148: 44-51. http://dx.doi.org/10.1016/j.marchem.2012.10.004
Sakshaug E., Bricaud A., Dandonneau Y., et al. 1997. Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankton Res. 19: 1637-1670. http://dx.doi.org/10.1093/plankt/19.11.1637
Sarmento H., Montoya J.M., Vázquez-Domínguez E., et al. 2010. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Phil. Trans. R. Soc. B 365: 2137-2149. http://dx.doi.org/10.1098/rstb.2010.0045 PMid:20513721 PMCid:PMC2880134
Simó R., Vila-Costa M., Alonso-Sáez L., et al. 2009. Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat. Microb. Ecol. 57: 43-55. http://dx.doi.org/10.3354/ame01325
Sournia A. 1973. La production primaire planctonique en Mediterranee. Newslett. Coop. Invest. Mediterr. Spec. Issue, No. 5 128 pp.
Steele J.H., Baird I.E. 1962. Further relations between primary production, chlorophyll, and particulate carbon. Limnol. Oceanogr. 7: 42-44. http://dx.doi.org/10.4319/lo.1962.7.1.0042
Steeman-Nielsen E. 1952. The use of radioactive carbon for measuring organic production in the sea. J. Cons. Int. Explor. Mer 18: 117-140. http://dx.doi.org/10.1093/icesjms/18.2.117
Steinberg D.K., Carlson C.A., Bates N.R., et al. 2001. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep- Sea Res. II 48: 1405-1447. http://dx.doi.org/10.1016/S0967-0645(00)00148-X
Tillmann U., Hesse K.-J., Colijn F. 2000. Planktonic primary production in the German Waden Sea. J. Plankton Res. 22: 1253-1276. http://dx.doi.org/10.1093/plankt/22.7.1253
Webb WL., Newton M., Starr D. 1974. Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17: 281-291. http://dx.doi.org/10.1007/BF00345747
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.