Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis) revealed by sequence data of the mitochondrial DNA control region and microsatellite markers


  • Pablo Sánchez Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya - Centre de Referència de Recerca i Desenvolupament en Aqüicultura de la Generalitat de Catalunya
  • Jordi Viñas Department of Marine Biology, Texas A&M University at Galveston - Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona
  • Jaime R. Alvarado Bremer Department of Marine Biology, Texas A&M University at Galveston - Department of Wildlife and Fisheries Sciences, Texas A&M University
  • Pedro Pablo Ambrosio Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya - Centre de Referència de Recerca i Desenvolupament en Aqüicultura de la Generalitat de Catalunya
  • Rosa Flos Departament d’Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya - Centre de Referència de Recerca i Desenvolupament en Aqüicultura de la Generalitat de Catalunya




Solea senegalensis, genetic variability, mitochondrial DNA Control Region, microsatellite loci, broodstock management, variance in reproductive success, flatfish


Comparisons of the levels of genetic variation within and between a hatchery F1 (FAR, n=116) of Senegalese sole, Solea senegalensis, and its wild donor population (ATL, n = 26), both native to the SW Atlantic coast of the Iberian peninsula, as well as between the wild donor population and a wild western Mediterranean sample (MED, n=18), were carried out by characterizing 412 base pairs of the nucleotide sequence of the mitochondrial DNA control region I, and six polymorphic microsatellite loci. FAR showed a substantial loss of genetic variability (haplotypic diversity, h=0.49±0.066; nucleotide diversity, π=0.006±0.004; private allelic richness, pAg=0.28) to its donor population ATL (h=0.69±0.114; π=0.009±0.006; pAg=1.21). Pairwise FST values of microsatellite data were highly significant (P < 0.0001) between FAR and ATL (0.053) and FAR and MED (0.055). The comparison of wild samples revealed higher values of genetic variability in MED than in ATL, but only with mtDNA CR-I sequence data (h=0.948±0.033; π=0.030±0.016). However, pairwise ΦST and FST values between ATL and MED were highly significant (P < 0.0001) with mtDNA CR-I (0.228) and with microsatellite data (0.095), respectively. While loss of genetic variability in FAR could be associated with the sampling error when the broodstock was established, the results of parental and sibship inference suggest that most of these losses can be attributed to a high variance in reproductive success among members of the broodstock, particularly among females.


Download data is not yet available.


Aho T., Rönn J., Piironen J., Björklund M. 2006. Impacts of effective population size on genetic diversity in hatchery reared Brown trout (Salmo trutta L.) populations. Aquaculture 253: 244-248. http://dx.doi.org/10.1016/j.aquaculture.2005.09.013

Alarcón J., Magoulas A., Georgakopoulos T., Zouros E., Álvarez M. 2004. Genetic comparison of wild and cultivated European populations of the gilthead sea bream (Sparus aurata). Aquaculture 230: 65-80. http://dx.doi.org/10.1016/S0044-8486(03)00434-4

Alvarado Bremer J.R., Mejuto J., Baker A.J. 1995. Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius L.) populations in the Atlantic Ocean. Can. J. Fish. Aquat. Sci. 52: 1720-1732. http://dx.doi.org/10.1139/f95-764

Alvarado Bremer J.R., Viñas J., Mejuto J., Ely B., Pla C. 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36: 169-187. http://dx.doi.org/10.1016/j.ympev.2004.12.011 PMid :15904864

Anguís V., Cañavate J.P. 2005. Spawning of captive Senegal sole (Solea senegalensis) under a naturally fluctuating temperature regime. Aquaculture 243: 133-145. http://dx.doi.org/10.1016/j.aquaculture.2004.09.026

Blonk R.J.W., Komen J., Kamstra A., Crooijmans R.P.M.A., Van Arendonk J.A.M. 2009. Levels of inbreeding in group mating captive broodstock populations of Common sole, (Solea solea), inferred from parental relatedness and contribution. Aquaculture 289: 26-31. http://dx.doi.org/10.1016/j.aquaculture.2009.01.012

Borsa P., Blanquer A., Berrebi P. 1997. Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar. Biol. 129: 233-246. http://dx.doi.org/10.1007/s002270050164

Borsa P., Quignard J.P. 2001. Systematics of the Atlantic-Mediterranean soles Pegusa impar, P. lascaris, Solea aegyptiaca, S. senegalensis, and S. solea (Pleuronectiformes: Soleidae). Can. J. Zool. 79: 2297-2302. http://dx.doi.org/10.1139/z01-176

Cañavate, J.P., Fernández-Díaz C. 1999. Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture 174: 255-263. http://dx.doi.org/10.1016/S0044-8486(99)00021-6

Clement M., Posada D., Crandall K.A. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1660. http://dx.doi.org/10.1046/j.1365-294x.2000.01020.x PMid :11050560

Cognetti G., Maltagliati F., Saroglia M. 2006. The risk of “genetic pollution” in Mediterranean fish populations related to aquaculture activities. Mar. Pollut. Bull. 52: 1321-1323. http://dx.doi.org/10.1016/j.marpolbul.2006.09.016 PMid :17055003

Coughlan J.P., Imsland A.K., Galvin P.T., Fitzgerald R.D., Naevdal G., Cross, T.F. 1998. Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: a preliminary study. J. Fish. Biol. 52: 916-922. http://dx.doi.org/10.1111/j.1095-8649.1998.tb00592.x

DeWoody J., Avise J. C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56: 461-473. http://dx.doi.org/10.1111/j.1095-8649.2000.tb00748.x

Dinis M.T., Ribeiro L., Soares F., Sarasquete C. 1999. A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 176: 27-38. http://dx.doi.org/10.1016/S0044-8486(99)00047-2

Exadactylos A., Geffen A.J., Thorpe J.P. 1998. Population structure of the Dover sole, Solea solea L., in a background of high gene flow. J. Sea. Res. 40: 117-129. http://dx.doi.org/10.1016/S1385-1101(98)00015-X

Exadactylos A., Geffen A.J., Thorpe J.P. 1999. Growth and genetic variation in hatchery-reared larval and juvenile Dover sole, Solea solea (L.). Aquaculture 176: 209-226. http://dx.doi.org/10.1016/S0044-8486(99)00112-X

Excoffier L., Smouse P., Quattro J. 1992. Analysis of molecular variance inferred from the metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 150-163.

Excoffier L., Lischer H.E.L. 2010, Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x PMid :21565059

Falconer D. 1960. Introduction to quantitative genetics. Oliver and Boyd, London.

Fjalestad K. T., Moen T., Gomez-Raya L. 2003. Prospects for genetic technology in salmon breeding programmes. Aquac. Res. 34: 397-406. http://dx.doi.org/10.1046/j.1365-2109.2003.00823.x

Flos R., Reig L., Ambrosio P.P. 2001. Towards the actual transfers of the sole (Solea spp.) to the productive sector. In: Kjorsvik E., Stead S. (eds.), New Species. New Technologies. EAS Special Publication 29: 75-76.

Gavaia P.J., Dinis M.T., Cancela M.L. 2002. Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea senegalensis). Aquaculture 211: 305-323. http://dx.doi.org/10.1016/S0044-8486(02)00167-9

Greig T.W. 2000. Partitioning genetic variation in swordfish (Xiphias gladius L.); Analysis of sample variance and population structure. Ph. D. thesis, Univ. South Carolina.

Guarniero I., Franzellitti S., Ungaro N., Tommasini S., Piccinetti C., Tinti F. 2002. Control region haplotype variation in the central Mediterranean common sole indicates geographical isolation and population structuring in Italian stocks. J. Fish. Biol. 60: 1459-1474. http://dx.doi.org/10.1111/j.1095-8649.2002.tb02440.x

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.

Imsland A.K., Foss A., Conceição L.E.C., Dinis M.T., Delbare D., Schram E., Kamstra A., Rema P., White P. 2003. A review of the culture potential of Solea solea and S. senegalensis. Rev. Fish. Biol. Fisher. 13: 379-408. http://dx.doi.org/10.1007/s11160-004-1632-6

Kalinowski S.T. 2005. HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol. Ecol. Notes. 5: 187-189. http://dx.doi.org/10.1111/j.1471-8286.2004.00845.x

Kalinowski S.T., Wagner A.P., Taper M.L. 2006. ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes. 6: 576-579. http://dx.doi.org/10.1111/j.1471-8286.2006.01256.x

Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269

Nei M., Tajima F. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics. 97: 145-163. PMid :6266912    PMCid:1214380

Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.

Nguyen T.T.T., Ingram B., Sungan S., Gooley G., Sim S.Y., Tinggi D., De Silva S.S. 2006. Mitochondrial DNA diversity of broodstock of two indigenous mahseer species, Tor tambroides and T. douronensis (Cyprinidae) cultured in Sarawak, Malaysia. Aquaculture 253: 259-269. http://dx.doi.org/10.1016/j.aquaculture.2005.09.014

Porta J., Álvarez M. 2004. Development and characterization of microsatellites from Senegal sole (Solea senegalensis). Mol. Ecol. Notes 4: 277-279. http://dx.doi.org/10.1111/j.1471-8286.2004.00640.x

Porta J., Porta J.M., Martínez-Rodríguez G., Álvarez M. 2006. Genetic structure and genetic relatedness of a hatchery stock of Senegal sole (Solea senegalensis) inferred by microsatellites. Aquaculture 251: 46-55. http://dx.doi.org/10.1016/j.aquaculture.2005.05.019

Porta J., Porta J. M., Cañavate P., Martínez-Rodríguez G., Álvarez M. C. 2007. Substantial loss of genetic variation in a single generation of Senegalese sole (Solea senegalensis) culture: implications in the domestication process. J. Fish. Biol. 71: 223-234. http://dx.doi.org/10.1111/j.1095-8649.2007.01576.x

R Development Core Team 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Raymond M., Rousset F. 1995. An exact test for population differentiation. Evolution. 49: 1280-1283. http://dx.doi.org/10.2307/2410454

Reig L., Oca J., Flos R. 2000. Trading perspectives of a potential farmed sole (Solea sp) evaluated at the central fish market of Barcelona (Spain). In: Flos R., Creswell L. (eds.), Responsible Aquaculture in the New Millennium. EAS Special Ppublication 28: 596.

Reig L., Ginovart M., Flos R. 2003. Modification of the feeding behaviour of sole (Solea solea) through the addition of a commercial flavour as an alternative to betaine. Aquat. Living. Resour. 16: 370-379. http://dx.doi.org/10.1016/S0990-7440(03)00062-7

Sánchez P., Ambrosio P.P., Reig L., Flos R. 2003. Técnica de biopsia muscular con aguja cortante fina en peces pequeños. In: Consejería de Agricultura y Pesca. Junta de Andalucía. (eds.), Libro de Resúmenes del IX Congreso Nacional de Acuicultura, pp. 360-362.

Sanger F., Nicklen S., Coulson A. R. 1977. DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463-5467. http://dx.doi.org/10.1073/pnas.74.12.5463

Sekino M., Hara M., Taniguchi N. 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture. 213: 101-122. http://dx.doi.org/10.1016/S0044-8486(01)00885-7

Tinti F., Piccinetti C. 2000. Molecular systematics of the Atlanto-Mediterranean Solea species. J. Fish. Biol. 56: 604-614. http://dx.doi.org/10.1111/j.1095-8649.2000.tb00758.x

Tinti F., Piccinetti C., Tommasini S.,Vallisneri M. 2000. Mitochondrial DNA variation, phylogenetic relationships, and evolution of four Mediterranean genera of soles (Soleidae, Pleuronectiformes). Mar. Biotechnol. 2: 274-284.

Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4(3): 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x

Viñas J., Alvarado Bremer J., Pla C. 2004. Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Mar. Biol. 145(2): 1-8.

Vu A.T. 1997. Molecular characterization of the Cytochrome b-12S rRNA mitochondrial region in the American alligator (Alligator mississippiensis). Honours thesis, Univ. South Carolina.

Wang J. 2004. Sibship reconstruction from genetic data with typing errors. Genetics. 166: 1963-1979. http://dx.doi.org/10.1534/genetics.166.4.1963 PMid :15126412    PMCid:1470831

Ward R.D., Woodwark M., Skibinski D.O.F. 1994. A comparison of genetic diversity levels in marine fresh-water, and anadromous fishes. J. Fish. Biol. 44: 213-232. http://dx.doi.org/10.1111/j.1095-8649.1994.tb01200.x

Zorrilla I., Arijo S., Chabrillón M., Díaz P., Martínez-Manzanares E., Balebona M., Moriñigo M. 2003. Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J. Fish. Dis. 26: 103-108. http://dx.doi.org/10.1046/j.1365-2761.2003.00437.x PMid :12962218




How to Cite

Sánchez P, Viñas J, Alvarado Bremer JR, Ambrosio PP, Flos R. Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis) revealed by sequence data of the mitochondrial DNA control region and microsatellite markers. Sci. mar. [Internet]. 2012Jun.30 [cited 2024May19];76(2):225-3. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1346



Featured Article