Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity

Authors

  • Antonela Asaro Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CIC
  • Juana Cristina del Valle Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata
  • Alejandra Antonia López Mañanes Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET

DOI:

https://doi.org/10.3989/scimar.2011.75n3517

Keywords:

euryhaline crabs, amylase, maltase, sucrase, hepatopancreas, hyperregulation

Abstract


Studies on digestive adjustments at the biochemical level in relation to salinity in euryhaline crabs are lacking. Moreover, knowledge of biochemical digestive characteristics of euryhaline crabs (i.e. occurrence and characteristics of key digestive enzyme activities) is still scarce and fragmentary. We studied the occurrence, characteristics and response to low salinity of amylase, maltase and sucrase activities in the hepatopancreas of the euryhaline crab Neohelice (Chasmagnathus) granulata. Maximal amylase and maltase activities were found at pH 5.2. Sucrase activity was maximal within the pH range 3.6-5.2. Amylase, maltase and sucrase activities showed a Michaelis-Menten kinetics (km = 0.41±0.10 mg ml-1; 1.37±1.03 mM and 0.55±0.45 mM, respectively). In crabs acclimated to low salinity (10 psu; hyperregulating conditions), amylase activity (7263±980 μg maltose min-1 mg prot-1) was higher than in 35 psu (osmoconforming conditions) (3605±340 μg maltose min-1 mg prot-1). Maltase and sucrase activities (497±98 and 64±16 μg glucose min-1 mg prot-1, respectively) were similar in both salinities. The response of amylase activity to low salinity suggests a role in digestive adjustments upon hyperregulation. This study contributes to a better understanding of the complexity of the biochemical adaptations to low salinity in euryhaline crabs.

Downloads

Download data is not yet available.

References

Anger, K. - 2001. The Biology of Decapod Crustacean Larvae. Crustacean issues, 14: 1-420.

Azzalina, J.D. and D.G. Trainer. - 1985. Amylolytic activity in the hepatopancreas of Uca minax, Uca pugnax and Uca pugilator. Comp. Biochem. Physiol. B., 82(4): 679-982. http://dx.doi.org/10.1016/0305-0491(85)90507-3

Biesiot, P. and J.M. Capuzzo. - 1990. Changes in the digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J. Exp. Mar. Biol. Ecol., 136(3): 107-122. http://dx.doi.org/10.1016/0022-0981(90)90190-N

Buckup, G.B., N.F. Fountoum, N.P. Marroni and L.C. Kucharski. - 1991. O caranguejo. Manual para o ensino prático em zoología. Editoria Da Universidade, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Bradford, M.M. - 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein-dye binding. Analyt. Biochem., 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3

del Valle, J.C. and A.A. López Mañanes. - 2008. Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. A., 150(4): 387-394. http://dx.doi.org/10.1016/j.cbpa.2008.03.011

Figueiredo, M.S.R.B. and A.J. Anderson. - 2009. Digestive enzyme spectra in crustacean decapods (Paleomonidae, Portunidae and Penaeidae) feeding in the natural habitat. Aquac. Res., 40(3): 282-291. http://dx.doi.org/10.1111/j.1365-2109.2008.02087.x

Fonseca, F.V., J.R. Silva, R. Samuels, R. DaMatta, W. Terra and C.P. Silva. - 2010. Purification and partial characterization of a midgut membrane-bound α-glucosidase from Quesada gigas (Hemiptera: Cicadidae). Comp. Biochem. Physiol., Part B 155: 20-25.

Freire, C.A., H. Onken and J.C. McNamara. - 2008. A structure function analysis of ion transport in crustacean gills and excretory organs. Comp. Biochem. Physiol. A., 151(3): 272-304.

Hammer, H.S., C.D. Bishop and S.A. Watts. - 2003. The characterization of three digestive enzymes from the crayfish. Procamabarus clarkii. J. Alabama Acad. Sci., 74(1):47-59.

Iribarne, O., A. Bortolus and F. Botto. - 1997. Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar. Ecol. Prog. Ser., 155: 132-145. http://dx.doi.org/10.3354/meps155137

Johnston, D.J. - 2003. Ontogenic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda, Palinuridae). Mar. Biol., 143(6): 1071-1082. http://dx.doi.org/10.1007/s00227-003-1154-0

Johnston, D.J. and J. Freeman. - 2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol. Bull., 208(1): 36-46. http://dx.doi.org/10.2307/3593099 PMid:15713811

Kucharski, L.C., V. Schein, E. Capp and R.S.M. Da Silva. - 2002. In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata. Gen. Comp. Endocrinol., 125(2): 256-263. http://dx.doi.org/10.1006/gcen.2001.7748 PMid:11884071

Li, E., L. Chen, C. Zeng, N. Yu, Z. Xiong, X. Chen and J.G. Qin. - 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture, 274: 80-86. http://dx.doi.org/10.1016/j.aquaculture.2007.11.001

López Mañanes, A.A., L.J. Magnoni and A.L. Goldemberg. - 2000. Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp. Biochem. Physiol. B., 127(1): 85-95.

Lorenzon, S. - 2005. Hyperglycemic stress response in Crustacea. ISJ., 2: 132-141.

Lwalaba, D., K.H. Hoffmann and J. Woodring. - 2010. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Arch. Insect. Biochem. Physiol., 73(1): 1-16. PMid:19557853

McClintock, J.B., T.S. Klinger, K. Marion and P. Hsueh. - 1991. Digestive carbohydrases of the blue crab Callinectes sapidus (Rathbun): implications in utilization of plant-derived detritus as a trophic resource. J. Exp. Mar. Biol. Ecol., 148(2): 233-239. http://dx.doi.org/10.1016/0022-0981(91)90084-A

Muhlia-Almazán, A. and F.L. García-Carreño. - 2003. Digestion Physiology and Proteolytic Enzymes of Crustacean Species of the Mexican Pacific Ocean. In: M.E. Henrickx, (ed.), Contributions to the Study of the East Pacific Crustaceans. Instituto de Ciencias del Mar y Limnologia, UNAM, México, 2: 77-91

Pavasovic, M., N.A. Richardson, A.J. Anderson, D. Mann and P.B. Mather. - 2004. Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture, 242(1-4): 641-654. http://dx.doi.org/10.1016/j.aquaculture.2004.08.036

Pinoni, S.A. - 2009. Mecanismos de mantenimiento del medio interno en respuesta a estrés ambiental en crustáceos decápodos de interés regional. PhD thesis, Universidad Nacional de Mar del Plata. Mar del Plata.

Pinoni, S.A., A.L Goldemberg and A.A. López Mañanes. - 2005. Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: Response to environmental salinity. J. Exp. Mar. Biol. Ecol., 326(2): 217-226. http://dx.doi.org/10.1016/j.jembe.2005.06.004

Pinoni, S.A. and A.A. López Mañanes. - 2009. Na+ ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: Differential response to environmental salinity. J. Exp. Mar. Biol. Ecol., 372(1-2): 91-97. http://dx.doi.org/10.1016/j.jembe.2009.02.012

Resch-Sedlmeier, G. and D. Sedlmeier. - 1999. Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comp. Biochem. Physiol B., 1(2)2: 187-192.

Saxena, P. and R.C. Murthy. - 1982. Hepatopancreatic sucrase of Macrobrachium lamarrei (Crustacea, Caridea, Palaemonidae). Proc. Indian Acad. Soi. (Anim. Sci.)., 91(1): 33-38.

Schleich, C., A.L. Goldemberg and A.A. López Mañanes. - 2001. Salinity dependent Na+/K+ ATPase activity in gills of euryhaline crab Chasmagnathus granulatus. Gen. Physiol. Biophys., 20: 255-256. PMid:11765216

Spivak, E. - 1997. Cangrejos estuariales del Atlántico sudoccidental (25°-41°S) (Crustacea: Decapoda: Brachyura). Invest. Mar. Valparaíso, 25 : 105-120.

Sterling, K.M., C.O. Cheeseman and G.A. Ahearn. - 2009. Identification of a novel sodium-dependent fructose transport activity in the hepatopancreas of the Atlantic lobster Homarus americanus. J. Exp. Biol., 212(12): 1912-1920. http://dx.doi.org/10.1242/jeb.026831 PMid:19483009

Valle, S.C., P. Eichler, J.E. Maciel, G. Machado, L.C. Kucharski and R.S.M Da Silva. - 2009. Seasonal variation in glucose and neutral amino acid uptake in the estuarine crab Neohelice granulata. Comp. Biochem. Physiol. A., 153(3): 252-257. http://dx.doi.org/10.1016/j.cbpa.2009.02.033

Van Weel, P.B. - 1960. On the secretion of digestive enzymes by the marine crab, Thalamita crenata. J. Comp. Physiol., 43(6): 567-577.

Verri, T., A. Mandal, L. Zilli, D. Bossa, P.K. Mandal, L. Ingrosso, V. Zonno, S. Viella, G.A. Aheam and C. Storelli. - 2001. D-Glucose transport in decapod crustacean hepatopancreas. Comp. Biochem. Physiol. A., 130(3): 585-606. http://dx.doi.org/10.1016/S1095-6433(01)00434-2

Downloads

Published

2011-09-30

How to Cite

1.
Asaro A, del Valle JC, López Mañanes AA. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci. mar. [Internet]. 2011Sep.30 [cited 2024Mar.29];75(3):517-24. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1274

Issue

Section

Articles