Use of biochemical indices for analysis of growth in juvenile two-spotted gobies (Gobiusculus flavescens) of the Baltic Sea
DOI:
https://doi.org/10.3989/scimar.2009.73s1159Keywords:
Gobiusculus flavescens, juveniles, temperature, growth, RNA/DNA, biochemical indicatorsAbstract
Multiple biochemical measurements were evaluated as an indirect measure of juvenile fish growth rate. Juvenile two-spotted gobies, Gobiusculus flavescens (Fabricius), caught in the Kiel Bight, were incubated in a temperature gradient table at 7 different temperatures ranging from 9 to 22.7°C for up to 28 days and sampled weekly. RNA/DNA ratios (RNA/DNA), protein and lipid amounts were measured in whole fish homogenates and compared with calculated weight-based growth rates of the individuals. RNA/DNA values were not significantly correlated with weight-specific growth rates. Lipid- and protein-based growth rates, on the other hand, were highly correlated with weight-specific growth (R2 of 0.4-0.5) and lipid-based growth rate explained 45.8% variability of weight-based growth in a linear growth model. Weight-based growth rates showed a dome-shaped relationship to temperature with a maximum around 16°C, a trend mirrored in lipid-based growth rates. The results indicate a stage-dependent shift in energy storage and metabolism with a decoupling of RNA/DNA as an index of weight-based growth rate as the juvenile gobies mature and lipids become the main determinant of weight-based growth in these fish.
Downloads
References
BACC Author Team. – 2008. Assessment of climate change for the Baltic Sea Basin. Springer.
Barnes, H. and J. Blackstock. – 1973. Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanillin method for ‘total’ lipids. J. Exp. Mar. Biol. Ecol., 12: 103-118. doi:10.1016/0022-0981(73)90040-3
Baumann, H., R.Voss, H.H.Hinrichsen, C. Möllmann, F.W. Köster, A.M. Malzahn and A. Temming. – 2006. Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Can. J. Fish. Aquat. Sci., 63: 2191-2201. doi:10.1139/F06-112
Belchier, M., C. Clemmesen, D. Cortes, T. Doan, A. Folkvord, A. Garcia, A. Geffen, H. Høie, A. Johannessen, E. Moksness, H. de Pontual, T. Ramirez, D. Schnack, and B. Sveinsbo. – 2004. Recruitment studies: manual on precision and accuracy of tools. ICES Tech. Mar. Environ. Sci., 33: 1-35.
Bergeron, J.P. – 1997. Nucleic acids in ichthyoplankton ecology: a review, with emphasis on recent advances for new perspectives. J. Fish Biol., 51: 284-302. doi:10.1111/j.1095-8649.1997.tb06104.x
Blake, B.F. – 1983. A comparative study of the diet of auks killed during an oil incident in the Skagerrak in January 1981. J. Zool., 201: 1-12. doi:10.1111/j.1469-7998.1983.tb04257.x
Bradford, M. – 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254. doi:10.1016/0003-2697(76)90527-3 PMid:942051
Buckley, L.J. – 1982. Effects of temperature on growth and biochemical composition of larval winter flounder (Pseudopleuronectes americanus). Mar. Ecol. Prog. Ser., 8: 181-186 doi:10.3354/meps008181
Buckley, L.J., S.I. Turner, T.A. Halavik, A.S. Smigielski, S.M. Drew and G.C. Laurence. – 1984. Effects of temperature and food availability on growth, survival, and RNA-DNA ratio of larval sand lance (Ammodytes americanus). Mar. Ecol. Prog. Ser., 15: 91-97. doi:10.3354/meps015091
Buckley, L.J., E. Caldarone and T.L. Ong. – 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia, 401: 265-277. doi:10.1023/A:1003798613241
Buckley, L.J., E. Caldarone, R.G. Lough and J.M. St. Onge-Burns.– 2006. Ontogenetic and seasonal trends in recent growth rates of Atlantic cod and haddock larvae on Georges Bank: effects of photoperiod and temperature. Mar. Ecol. Prog. Ser., 325: 205-226. doi:10.3354/meps325205
Buckley, L.J., E.M. Caldarone and C. Clemmesen. – 2008. Multispecies larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: results from a metaanalysis. Mar. Ecol. Prog. Ser., 371: 221-232. doi:10.3354/meps07648
Bulow, F.J. – 1970. RNA/DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Bd. Can., 27: 2343-2349.
Caldarone, E.M. – 2005. Estimating growth in haddock larvae Melanogrammus aeglefinus from RNA:DNA ratios and water temperature. Mar. Ecol. Prog. Ser., 293:241-252. doi:10.3354/meps293241
Caldarone, E.M., C.M. Clemmesen, E. Berdalet, T.J. Miller, A. Folkvord, G.J. Holt, M.P. Olivar and I.M. Suthers. – 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods, 4: 153-163.
Campana, S.E. – 1996. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser., 135: 21-26. doi:10.3354/meps135021
Campana, S.E., K.T. Frank, P.C.F. Hurley, P.A. Koeller, F.H. Page and P.C. Smith. – 1989. Year Survival and abundance of young Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) as indicators of year-class strength. Can. J. Fish. Aquatic Sci., 46: 171-182. doi:10.1139/f89-287
Carter, C.G., G.C. Seeto, A. Smart, S. Clarke and R.J. van Barneveld.– 1998. Correlates of growth in farmed juvenile southern bluefin tuna Thunnus maccoyii (Castelnau). Aquaculture, 161: 107-119 doi:10.1016/S0044-8486(97)00261-5
Carter, C.G. and D.F. Houlihan. – 2001. Protein synthesis. In: P. Wright and P. Anderson (eds.), Fish physiology, nitrogen excretion, vol. 20, pp. 31–75. Academic Press, New York. doi:10.1016/S1546-5098(01)20003-X
Clemmesen, C. – 1993. Improvements in the fluorimetric determination of the RNA and DNA content in individual marine fish larvae. Mar. Ecol. Prog. Ser., 100, 177-183. doi:10.3354/meps100177
Costello, M.J., J. Edwards and G.W. Potts. – 1990. The diet of the two-spot goby, Gobiusculus flavescens (Pisces). J. Mar. Biol. Ass. U.K., 70: 329-342. doi:10.1017/S002531540003544X
Ehrenberg, S.Z., S. Hansson and R. Elmgren. – 2005. Sublittoral abundance and food consumption of Baltic gobies. J. Fish Biol., 67: 1083-1093. doi:10.1111/j.0022-1112.2005.00811.x
Ferron, A. and W.C. Leggett . – 1994. An appraisal of condition measures for marine fish larvae. Adv. Mar. Biol., 30: 217-303. doi:10.1016/S0065-2881(08)60064-4
Folch, J., M. Lees and G.H. Sloane-Stanley. – 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem., 226: 497-509.
Foster, A.R., .F. Houlihan and S.J. Hall. – 1993. Effects of nutrional regime on correlates of growth rate in juvenile Atlantic cod (Gadus morhua): comparisons of morphological and biochemical measurements. Can. J. Fish. Aquat. Sci., 50: 502-512 doi:10.1139/f93-059
Frommel, A.Y. – 2008. Influence of temperature on growth and biochemical-based indicators of growth in juvenile Gobiids of the Baltic Sea. Master thesis, Univ. Southern Denmark.
Groves, T.D.D. – 1970. Body composition changes during growth in young sockeye (Oncorhynchus nerka) in fresh water. In: A.H. Weatherly and H.S. Gill (eds). The Biology of Fish Growth, pp. 104-105. Academic Press, London.
Hjort, J. – 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapp. Prov. Verb., 20: 1-288.
Hoar, W.S. and D.J. Randall . – 1969. Fish Physiology, Volume 1: Excretion, Ionic Regulation and Metabolism, pp. 398-414. Academic Press, New York.
Katersky, R.S. and C.G. Carter. – 2007. A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquaculture, 267: 157-164. doi:10.1016/j.aquaculture.2007.02.043
Keast, A., and J.M. Eadie. – 1985. Growth depensation in year-0 largemouth bass: the influence of diet. T. Am. Fish. Soc., 114: 204-213. doi:10.1577/1548-8659(1985)114<204:GDIYLB>2.0.CO;2
Kondratovics, E. – 1997. Distribution, feeding, and growth parameters of young cod in the eastern Baltic in 1970-1992. In: A. Andrushaitis (ed) Proceedings of the 13th Symposium of the Baltic Marine Biologists, pp. 197-203. Riga.
Kuropat, C., R. Mercaldo-Allen, E. Caldarone, R. Goldberg, B. Phelan and F. Thurnberg. – 2002. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautoga onitis. Mar. Ecol. Prog. Ser., 230: 265-274. doi:10.3354/meps230265
Le Pecq, J.B. and C. Paoletti. – 1966. A new fluorometric method for RNA and DNA determination. Anal. Biochem., 17: 100-107. doi:10.1016/0003-2697(66)90012-1 PMid:6008008
Lick, R.R. – 1991. Untersuchungen zu Lebenszyklus (Krebse-Fischemarine Saeuger) und Gefrierresistenz anisakider Nematoden in Nord- und Ostsee. Ber. Inst. Meereskd. CAU, Kiel 218.
Lissåker, M., C. Kvarnemo and O. Svensson. – 2003. Effects of a low oxygen environment on parental effort and filial cannibalism in the male sand goby, Pomatoschistus minutus. Behav. Ecol., 14: 374-381. doi:10.1093/beheco/14.3.374
Lohmeyer, U. and G. Hempel. – 1977. Winter food of the Baltic herring (Clupea harengus L.). Int. Counc. Explor. Sea C.M., 1977/P: 7, 13 p.
Malloy, K.D. and T.E. Targett. – 1994. The use of RNA:DNA ratios to predict growth limitation of juvenile summer flounder (Paralichtys dentatus) from Delaware and North Carolina estuaries. Mar. Biol., 118: 367-375. doi:10.1007/BF00350293
Mathers, E.M., D.F. Houlihan and M.J. Cunningham. – 1992. Nucleic acid concentrations and enzyme activities as correlates of growth rate of the saithe Pollachius virens: growth-rate estimates of open-sea fish. Mar. Biol., 112: 363-369. doi:10.1007/BF00356280
McCarthy, I.D., E. Moksness, D.A. Pavlov and D.F. Houlihan. –1999. Effects of water temperature on protein synthesis and protein growth in juvenile Atlantic wolfish (Anarhichas lupus). Can. J. Fish. Aquat. Sci., 56: 231-241. doi:10.1139/cjfas-56-2-231
McLaughlin, R.L., M.M. Ferguson M.M. and D.L.G. Noakes. – 1994. Tissue concentrations of RNA and protein for juvenile brook trout (Salvelinus fontinalis): lagged responses to fluctuations in food availability. Fish Physiol. Biochem., 14(6): 459-469. doi:10.1007/BF00004346
Oliver, J.D., G.F. Holeton and K.E. Chua. – 1979. Overwinter mortality of fingerling smallmouth bass in relation to size, relative energy stores, and environmental temperature. T. Am. Fish. Soc., 108: 130-136. doi:10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2
Peck, M.A., L.J. Buckley, E.M. Caldarone and D.A. Bengston. –2003. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser., 251: 233-243. doi:10.3354/meps251233
Petereit, C. – 2004. Experimente zum Temperatureinfluss auf fruehe Entwicklungsstadien des Ostseedorsches Gadus morhua. Diploma thesis, Univ. Kiel.
Pfeiler, E. And A. Luna. – 1984. Changes in biochemical composition and energy utilization during metamorphosis of leptocephalus larvae of the bonefish (Albula). Environ. Biol. Fish, 10: 243-251. doi:10.1007/BF00001477
Richard, P., J.P. Bergeron, M. Boulhic, R. Galois and J. Pearson-Le Ruyet. – 1991. Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Mar. Ecol. Prog. Ser., 72: 69-77. doi:10.3354/meps072069
Shepherd, J.G. and D.H. Cushing. – 1980. A mechanism for density-dependent survival of larval fish as the basis of a stockrecruitment relationship. Journal du Conseil, 39: 160-167.
Sole, M., J. Kopecka and L.M. García de la Parra. – 2006. Seasonal variations of selected biomarkers in sand gobies Pomatoschistus minutus from the Guadalquivir estuary, southwest Spain. Arch. Environ. Contam. Toxicol., 50: 249-255. doi:10.1007/s00244-004-0250-6 PMid:16328622
Thomas, W.H., H.L. Scotten and J.S. Bradshaw. – 1963. Thermal gradient incubators for small aquatic organisms. Limnol. Oceanogr., 8: 357-360.
Weber, L.P, P.S. Higgins, R.I. Carlson and D.M. Janz. – 2003. Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J. Fish Biol., 63: 637-658. doi:10.1046/j.1095-8649.2003.00178.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.