Physiological study of larval fishes: challenges and opportunities

Authors

  • Warren Burggren Department of Biological Sciences, University of North Texas
  • Tara Blank Department of Biological Sciences, University of North Texas

DOI:

https://doi.org/10.3989/scimar.2009.73s1099

Keywords:

larval fish, physiological techniques, allometry, development, evolution, epigenetics

Abstract


Physiological studies of larval fishes have lagged far behind those of adults, yet offer tremendous opportunities for expanding our knowledge of the basic biology of both marine and freshwater fishes. Physiological studies of larval fishes can also improve research and management in areas of applied science, such as aquaculture, fisheries, and environmental assessment. Additionally, larval fishes can be highly effective as general animal models for understanding evolution, development and disease processes in vertebrates. While the small size of larval fishes may initially seem to preclude detailed physiological measurements, physiologists have taken advantage of larval transparency and permeability to drugs and toxins to collect many forms of quantitative physiological data. In this essay we present a number of microtechniques currently employed in larval fish to study the cardiovascular, muscular, neurological, and ionoregulatory systems. Several interesting phenomena, including allometry, developmental plasticity and epigenetic effects, are then discussed from the perspective of the specific contributions that have been or can be made by studies of fish larvae. Ultimately, the integration of larval fish physiology with studies of morphology and behaviour, is both highly feasibly and likely to strengthen basic and applied research in fishes.

Downloads

Download data is not yet available.

References

Adams, C.E., C. Woltering and G. Alexander. - 2003. Epigenetic regulation of trophic morphology through feeding behaviour in Arctic char, Salvelinus alpines. Biol. J. Linnean Soc., 78 (1): 43-49. doi:10.1046/j.1095-8312.2003.00126.x

Ayson, F.G., T. Kaneko, S. Hasegawa and T. Hirano. - 1994. Development of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia, O. mossambicus, in fresh water and seawater. J. Exp. Zool., 270: 129-135. doi:10.1002/jez.1402700202

Albokhadaim, I., C.L. Hammond, C. Ashton, B.H. Simbi, S. Bayol, S. Farrington and N. Stickland. - 2007. Larval programming of post-hatch muscle growth and activity in Atlantic salmon (Salmo salar). J. Exp. Biol., 210: 1735-1741. doi:10.1242/jeb.003194 PMid:17488936

Altimiras, J., A. Aissaoui. and L. Tort. - 1995. Is the short-term modulation of heart rate in teleost fish physiologically significant? Assessment by spectral analysis techniques. Braz. J. Med. Bio. Res., 28: 1197-1206.

Bagatto, B. - 2005. Ontogeny of cardiovascular control in zebrafish (Danio rerio): effects of developmental environment. Comp. Biochem. Physiol. A, 141: 391-400. doi:10.1016/j.cbpb.2005.07.002

Bagatto, B. and W. Burggren. - 2006. A three-dimensional functional assessment of heart and vessel development in the larva of the zebrafish (Danio rerio). Physiol. Biochem. Zool., 79(1): 194-201. doi:10.1086/498185 PMid:16380941

Bagatto, B.B. Pelster and W.W. Burggren. - 2001. Growth and metabolism of larval zebrafish: effects of swim training. J. Exp. Biol., 204: 4335-4343.

Barrionuevo, W.R. and W.W. Burggren. - 1999. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. J. Physiol. Regul. Integr. Comp. Physiol., 45: R505-R513.

Blank, T. 2009. Cardio-respiratory ontogeny and the transition to bimodal respiration in an air-breathing fish, the blue gourami (Trichogaster trichopterus): morphological and physiological development in normoxia and hypoxia. Ph.D. Dissertation, University of North Texas, Denton, Texas, U.S.A.

Burggren, W.W. - 2005. Developing animals flout prominent assumptions of ecological physiology. Comp. Biochem. Physiol. A, 141(4): 430-439. doi:10.1016/j.cbpb.2005.03.010

Burggren, W.W. and B. Bagatto. - 2008. Cardiovascular Anatomy and Physiology. In: R.N. Finn and B.G. Kapoor. (eds.), Fish Larval Physiology, pp. 119-161. Science Publishers, Enfield, New Hampshire.

Burggren, W.W. and S. Warburton. - 1994. Patterns of form and function in developing hearts: Contributions from non-mammalian vertebrates. Cardioscience 5(3): 183-191.

Drapeau, P., D.W. Ali, R.B. Buss and L. Saint-Amant. - 1999. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J. Neuro. Meth., 88: 1-13. doi:10.1016/S0165-0270(99)00008-4 PMid:10379574

Finn R.N. and B.G. Kapoor (eds.). - 2007. Fish Larval Physiology. Science Publishers, Enfield, New Hampshire.

Finn, R.N., I. Ronnestad, T. van der Meeren and H.J. Fyhn. - 2002. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 243: 217-234. doi:10.3354/meps243217

Finn, R.N., J. Widdows and H.J. Fyhn. - 1996. Calorespirometry of developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus). Mar. Biol., 122: 57-163.

Foskett, K.J. and C. Scheffey. - 1982. The chloride cell: definitive identification as the salt secreting cell in teleosts. Science, 215: 164-166. doi:10.1126/science.7053566 PMid:7053566

Fritsche, R. and W.W. Burggren. - 1996. Developmental responses to hypoxia in larvae of the frog Xenopus laevis. Amer. J. Physiol., 271: R912-R917.

Fritsche, R., T. Schwerte and B. Pelster. - 2000. Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279: R2200-R2207.

Geurden, I., M. Aramendi, M. Zambonino-Infante and S. Panserat.- 2007. Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am. J. Physiol. Regul. Integr. Comp. Physiol., 292: R2275-R2283. doi:10.1152/ajpregu.00444.2006

Giguere L.A., B. Cote, and J. F. St-Pierre. - 1988. Metabolic rates scale isometrically in larval fishes. Mar Ecol. Prog. Ser 50: 13-19. doi:10.3354/meps050013

Gould, S.J. - 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge.

Gould, S.J. - 1992. Heterochrony. In: E. Fox and E. Lloyds (eds.), Keywords in Evolutionary Biology, pp. 158-167. Harvard University Press, Cambridge.

Gregory, M., R. Hanumanthaiah and P. Jagadeeswaran. - 2002. Genetic analysis of hemostasis and thrombosis using vascular occlusion. Blood Cells Molec. Disease, 29(3): 286-295. doi:10.1006/bcmd.2002.0568

Guieng, L., D. Zhao, L. Huang, J. Sun, D. Gao, H. Wang, Y. Tan and L. Liang. - 2006. Identification and phylogenetic análisis of Vibrio vulnificus isolated from diseased Trachinotus ovatus in cage mariculture. Aquaculture, 261(1): 17-25. doi:10.1016/j.aquaculture.2006.07.013

Heming, T.A. and Buddington, R.K. - 1988. Yolk absorption in embryonic and larval fishes. In: W.S. Hoar and D.J. Randall (eds.), Fish Physiology, Vol XI, pp. 407-446. Academic Press, London.

Higashijima, S. - 2008. Transgenic zebrafish expressing fluorescente proteins in central nervous system neurons. Dev. Growth. Differ., 50(6): 407-13. doi:10.1111/j.1440-169X.2008.01023.x

Ho, D. 2008. Morphological and physiological developmental consequences of epigenetic processes in the chicken embryo (Gallus gallus domesticus) and the zebrafish larva (Danio rerio). Ph.D. Dissertation. Univ. North Texas.

Ho, D. and W.W. Burggren. - 2009. Epigenetics and transgenerational transfer: a comparative physiological perspective. Submitted to J. Exp. Biol.

Hou, P-C.L. and W.W. Burggren. - 1995. Blood pressures and heart rate during larval development in the anuran amphibian Xenopus laevis. Amer. J. Physiol., 269: R1120-R1125.

Hove, J.R., R.W. Koster, A.S. Forouhar, G. Acevedo-Bolton, S.E. Fraser and M. Gharib. - 2003. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421: 172-177. doi:10.1038/nature01282 PMid:12520305

Hunt von Herbing, I. (2006) The physiological basis for metabolic scaling in animals: A developing perspective. In: S.J. Warburton, W.W. Burggren, B. Pelseter, C.L. Reiber and J. Spicer. (eds.), Comparative Developmental Physiology, pp. 83-98. Oxford University Press, Oxford.

Hunt von Herbing, I. and Boutilier, R.G. (1996). Activity and metabolismo of larval Atlantic cod (Gadus morhua) from Scotian shelf and New foundland source populations. Mar. Biol. 124: 607-617. doi:10.1007/BF00351042

Isogai, S., M. Horiguchi and B.M. Weinstein. - 2001. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol., 230: 278-301. doi:10.1006/dbio.2000.9995 PMid:11161578

Jagadeeswaran, P. and Y. Liu. - 1997. A hemophilia model in zebrafish: analysis of hemostasis. Blood Cells Molec. Disease, 23(3): 52-57. doi:10.1006/bcmd.1997.0118

Jagadeeswaran, P., R. Paris and P. Rao. - 2006. Laser-induced thrombosis in zebrafish larvae: a novel genetic screening method for thrombosis. Meth. Mol. Med., 129: 187-195.

Jagadeeswaran, P., Y. Liu and J.P. Sheehan. - 1999. Analysis of hemostasis in zebrafish. Meth. Cell Biol., 59: 337-357. doi:10.1016/S0091-679X(08)61833-6

Jagadeeswaran, P., V. Kulkarni, M. Carrillo and S. Kim. - 2007. Zebrafish: from hematology to hydrology. J. Thrombosis Haemostasis, 5(s1): 300-304. doi:10.1111/j.1538-7836.2007.02518.x PMid:17635740

Jagadeeswaran, P. and J.P. Sheehan. - 1999. Analysis of blood coagulation in the zebrafish. Blood Cells Molec. Disease, 25(4): 239-249. doi:10.1006/bcmd.1999.0249

Johnston, I.A. - 2006. Environment and plasticity of myogenesis in teleost fish. J. Exp. Biol., 209: 2249-2264. doi:10.1242/jeb.02153 PMid:16731802

Kaneko, T., S. Hasegawa, Y. Takagi, M. Tagawa, M. and T. Hirano.- 1995. Hypoosmoregulatory ability of eyed-stag embryos of chum salmon. Mar. Biol., 122: 165-170. doi:10.1007/BF00349290

Kaneko, T. and J. Hiroi. - 2008. Osmo- and ionoregulation. In: R.N. Finn and B.G. Kapoor (eds.), Fish Larval Physiology, pp. 163-183. Science Publishers, Enfield.

Kaneko, T. and K. Shiraishi. - 2001. Evidence for chloride secretion from chloride cells in the yolk-sac membrane of Mozambique tilapia larvae adapted to seawater. Fish Sci., 68: 1-9. doi:10.1046/j.1444-2906.2002.00382.x

Kaneko, T. and J. Hiroi. - 2008. Osmo- and Ionoregulation. In: R.N. Finn and B.G. Kapoor. (eds.), Fish Larval Physiology, pp. 163-183. Science Publishers, Enfield, New Hampshire.

Koyama, T., H. Mishina and T. Asakura. - 1975. Study of microcirculation in web of frog (Xenopus laevis) by using laser Doppler microscope. Experientia, 31: 1420-1422. doi:10.1007/BF01923222

Kronnié, G. - 2000. Axial muscle development in fish. Basic Appl. Myol., 10(6): 261-267.

Kudo, S. - 2000. Enzymes responsible for the bactericidal effect in extracts of vitelline and fertilization envelops of rainbow trout eggs. Zygote, 8: 257-265. doi:10.1017/S0967199400001052 PMid:11014505

Lighton, J. - 2008. Measuring Metabolic Rates: A Manual for Scientists. Oxford University Press, Oxford, U.K.

Long, Q., A. Meng, H. Wang, J.R. Jessen, M.J. Farrell and S. Lin. - 1997. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development, 124: 4105-4111.

Makhanov, Y.V., O. Rinner and S.C.F. Neuhauss. - 2004. An inexpensive device for non-invasive electroretinography in small aquatic vertebrates. J. Neurosci. Meth., 135: 205-210. doi:10.1016/j.jneumeth.2003.12.015 PMid:15020104

Martell, D.J. and J.D. Kieffer. - 2007. Persistent effects of incubation temperature on muscle development in larval haddock (Melanogrammus aeglefinus). J. Exp. Biol., 210: 1170-1182. doi:10.1242/jeb.002188 PMid:17371916

Matschak, T.W., N.C. Stickland, A.R. Crook and T. Hopcroft. - 1995. Is physiological hypoxia the driving force venid temperature effects on muscle development in embryonic Atlantic salmon (Salmo salar)? Differentiation, 59(2): 71-77. doi:10.1046/j.1432-0436.1995.5920071.x

McLean, D.L. and J.R. Fetcho. - 2008. Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev. Neurobiol., 68(6): 817-34. doi:10.1002/dneu.20617 PMid:18383546

McCollum, A., J. Geubtner and I. Hunt von Herbing. - 2006. Metabolic cost of feeding in Atlantic cod (Gadus morhua) larvae using microcalorimetry. ICES J. Mar. Sci., 63: 335-339. doi:10.1016/j.icesjms.2005.10.007

McCormick, S.D., W.W. Dickhoff, J. Duston, R.S. Nishioka and H.A. Bern. - 1991. Developmental differences in the responsiveness of gill sodium, potassium ATP-ase to cortisol in salmonids. Gen. Comp. Endocrinol., 84: 308-317. doi:10.1016/0016-6480(91)90054-A PMid:1664399 McCormick, S.D. - 1994. Ontogeny and evolution of salinity tolerante in anadromous salmonids: hormones and heterochrony. Estuaries, 17(1A): 26-33. doi:10.2307/1352332

Mousseau, T. A. and C.W. Fox (eds.). - 1998. Maternal effects as adaptations. Oxford University Press, New York.

Müller, U.K. - 2008. Swimming and muscle. In: R.N. Finn and B.G. Kapoor (eds.), Fish Larval Physiology, pp. 523-549. Science Publishers, Enfield, New Hampshire.

Müller, U.K. and J.L. van Leeuwen. - 2004. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J. Exp. Biol., 207: 853-868. doi:10.1242/jeb.00821 PMid:14747416

Nachlas, M.M., K.C. Tsou, E. Desouza, C.S. Cheng and A.M. Seligman.- 1957. Cytochemical demonstration of succinic dehydrogenase by the use of pnitrophenyl substituted ditetrazolium. J. Histochem., 5: 420-436.

Pelster, B. - 2002. Developmental plasticity in the cardiovascular system of fish, with special referent to the zebrafish. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 133(3): 547-553. doi:10.1016/S1095-6433(02)00194-0

Pelster, B. - 2008. Gas Exchange. In: R.N. Finn and B.G. Kapoor (eds.), Fish Larval Physiology, pp. 91-117. Science Publishers, Enfield, New Hampshire.

Pelster, B. and W.E. Bemis. - 1991. Ontogeny of heart function in the little skate, Raja erinacea. J. Exp. Biol., 156: 387-398.

Pelster, B. and W. Burggren. - 1991. Central arterial hemodynamics in larval bullfrogs (Rana catesbeiana): developmental and seasonal influences. Am. J. Physiol. Regul. Integr. Comp. Physiol., 260: R240-R246.

Pelster, B. and W.W. Burggren. - 1996. Disruption of hemoglobina oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ. Res., 79: 358-362.

Pelster, B., A.M. Sanger, M. Siegele and T. Schwerte. - 2003. Influence of swim training on cardiac activity, tissue, capillarization, and mitochondrial density in muscle tissue of zebrafish larvae. Am. J. Physiol. Regul. Integr. Comp. Physiol., 285: R339-R347.

Post, J.R and J.A. Lee. - 1996. Metabolic ontogeny of teleost fishes. Can. J. Fish. Aquat. Sci. 53: 910-923. doi:10.1139/cjfas-53-4-910

Rombough, P.J. - 1988. Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. In: W.S. Hoar and D.J. Randall (eds.), Fish Physiology, vol. XIA, pp. 59-161. Academic Press, London.

Rombough, P.J. - 1998. Partitioning of oxygen uptake between the gills and skin in fish larvae: a novel method for estimating cutaneous oxygen uptake. J. Exp. Biol., 201: 1763-1769.

Rombough, P.J. - 2002. Gills are needed for ionoregulation befote they are needed for O2 uptake in developing zebrafish Danio rerio. J. Exp. Biol., 205: 1787-1794.

Rombough, P.J. - 2007(a). The functional ontogeny of the teleost gill: which comes first, gas or ion exchange? Comp. Biochem. Physiol. A, 148: 732-742. doi:10.1016/j.cbpa.2007.03.007

Rombough, P.J. - 2007(b). Ontogenetic changes in the toxicity and efficacy of the anaesthetic MS222 (tricaine methanesulfonate) in zebrafish (Danio rerio) larvae. Comp. Biochem. Physiol. A Mol Integr. Physiol., 148(2): 463-9. doi:10.1016/j.cbpa.2007.06.415

Rombough, P.J. and B.M. Moroz - 1997. The scaling and potencial importance of cutaneous and branchial surfaces in respiratory gas exchange in larval and juvenile walleye Stizostedion vitreum. J. Exp. Biol. 200: 2459-2468.

Ruzicka, J.J. and Gallager, S.M. 2006. Deep Sea Res. Part II, 53(23-24): 2708-2734 doi:10.1016/j.dsr2.2006.08.014

Schwerte, T. and R. Fritsche. - 2003. Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. Comp. Biochem. Physiol. A, 135: 131-145. doi:10.1016/S1095-6433(03)00044-8

Schwerte, T. and B. Pelster. - 2000. Digital motion analysis as a tool for analyzing the shape and performance of the circulatory system in transparent animals. J. Exp. Biol., 203: 1659-1669.

Schwerte, T., M. Axelsson, S. Nilsson and B. Pelster. - 1997. Effects of vagal stimulation on swimbladder blood flow in the European eel Anguilla anguilla. J. Exp. Biol., 200: 3133-3139.

Schwerte, T., D. Überbacher and B. Pelster. - 2003. Non-invasive imaging of blood cell concentration and blood distribution in zebrafish Danio rerio incubated in hypoxic conditions in vivo. J. Exp. Biol., 206: 1299-1307. doi:10.1242/jeb.00249 PMid:12624165

Schwerte, T., S. Voigt and B. Pelster. - 2005. Epigenetic variations in early cardiovascular performance and hematopoiesis can be explained by maternal and clutch effects in developing zebrafish (Danio rerio). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141(2): 200-209. doi:10.1016/j.cbpb.2005.05.042

Shiga, T., N. Tateishi and N. Maeda. - 1990. Visible spectroscopic technique for flowing erythrocytes in capillary. Biorheology, 27: 389-397.

Shiraishi, K., T. Kaneko, S. Hasegawa, S. and T. Hirano. - 1997. Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res., 288: 583-590. doi:10.1007/s004410050844 PMid:9134871

Spicer, J.I. and W.W. Burggren. - 2003. Development of physiological regulatory systems: altering the timing of crucial events. Zoology, 106: 91-99. doi:10.1078/0944-2006-00103 PMid:16351894

Spicer, J.I. and S.D. Rundle. - 2007. Plasticity in the timing of physiological development: physiological heterokairy-what is it, how frequent is it, and does it matter? Comp. Biochem. Physiol. A Mol. Integr. Physiol., 148(4): 712-719. doi:10.1016/j.cbpa.2007.05.027

Tytler, P. and M.V. Bell. - 1989. A study of diffusional permeability of water, sodium and chloride in yolk-sac larvae of cod (Gadus morhua L.). J. Exp. Biol., 147: 125-132.

van Raamsdonk, W., W. Mos, G. Tekronnie, C.W. Pool and P. Mijzen.- 1979. Differentiation of the musculature of the teleost Brachydanio rerio. II. Effects of immobilization on the shape and structure of somites. Acta. Morphol. Neerl. Scand., 17(4): 259-273.

Van Vliet, K.J., G.L. Smit, J.J. Pieterse, H.J. Schoonbee and J.H. Van Vuren. - 1985. thromboelastographic diagnosis of blood coagulation in two freshwater fish species. Comp. biochem. Physiol. A Comp. Physiol., 82: 19-21. doi:10.1016/0300-9629(85)90698-X

Varsamos, S., C. Nebel and G. Charmantier. - 2005. Ontogeny of osmoregulation in postembryonic fish: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141(4): 401-429. doi:10.1016/j.cbpb.2005.01.013

Weinstein, B.M., A.F. Schier, S. Abdelilah, J. Malicki, L. Solnica- Krezel, D.L. Stemple, D.Y. Stainier, F. Zwartkruis, W. Driever and M.C. Fishman. - 1996. Hematopoietic mutations in the zebrafish. Development, 123: 303-309.

Wieser W. - 1995. Energetics of fish larvae, the smallest vertebrates. Acta Physiol. Scand. 154(3): 279-290. doi:10.1111/j.1748-1716.1995.tb09912.x PMid:7572226

Wieser W. - 2002. Comparative and medical physiology: a theme with three variations. J. Comp. Physiol., B. 172(8): 651-657. doi:10.1007/s00360-002-0297-5

Zebrafish Information Network (ZFIN). University of Oregon, Eugene, OR 97403-5274; World Wide Web URL: http://zfin.org/.

Zhang, L. and A.D. McClellan. - 1998. Fluorescent tracers as possible candidates for double labeling of descending brain neurons in larval lamprey. J. Neuro. Meth., 85: 51-62. doi:10.1016/S0165-0270(98)00116-2 PMid:9874141

Downloads

Published

2009-10-30

How to Cite

1.
Burggren W, Blank T. Physiological study of larval fishes: challenges and opportunities. Sci. mar. [Internet]. 2009Oct.30 [cited 2024Apr.19];73(S1):99-110. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1112

Issue

Section

Articles