Scientia Marina, Vol 72, No 1 (2008)

Ichthyofauna assemblages from two unexplored Atlantic seamounts: Northwest Bank and João Valente Bank (Cape Verde archipelago)


https://doi.org/10.3989/scimar.2008.72n1133

Pedro Monteiro
Universidade do Algarve, Portugal

Daniel Ribeiro
Universidade do Algarve, Portugal

José A. Silva
Atlantic Wildlife Association, Portugal

João Bispo
Atlantic Wildlife Association, Portugal

Jorge M.S. Gonçalves
Universidade do Algarve, Portugal

Abstract


Underwater censuses by divers were used to study the fish assemblages from two unexplored Atlantic seamounts in the Cape Verde archipelago. Fifty three species of 27 families were recorded: 27 in Northwest Bank and 46 in João Valente Bank. Northwest Bank had dense schools, while João Valente Bank had higher species richness and smaller schools. Both seamounts were dominated mainly by coastal species directly depending on seabed habitat (Demersal or benthopelagic). Of the 53 fish species recorded, 22.6% were of continental African origin, while 9.4% and 5.7% were endemic of the Cape Verde Islands and of the Macaronesia province, respectively. Most species (64.2%) had a very wide biogeographic distribution: cosmopolitan (22.6%), amphi-Atlantic (28.3%) and Atlantic-Mediterranean (13.2%). Northwest Bank and João Valente Bank may have a permanent fish community supported by various oceanographic-topographic interactions. João Valente Bank seems more diverse, which is probably associated with algae cover and with a larger area providing additional suitable and more varied habitats. The geographic proximity to the coast and the presence of oceanic and/or oceanodromous species suggests that the upper part of these seamounts may act both as attraction points and as “stepping-stones” for the dispersal of coastal species.

Keywords


seamounts; underwater surveys; biogeography; Macaronesia; Northwest Bank; João Valente Bank; Cape Verde

Full Text:


PDF

References


Beckmann, A. and C. Mohn. – 2002. The upper ocean circulation at Great Meteor Seamount: Part II: Retention potential of the seamount-induced circulation. Ocean Dyn., 52: 194-204.

Bohnsack, J. and S. Bannerot. – 1986. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Tech. Rep. NMFS., 41: 1-15.

Bortone, A., W. Hastings and J. Oglesby. – 1986. Quantification of reef assemblages: a comparison of several in situ methods. Northeast Gulf Sci., 8(Suppl. 1): 1-22.

Cardigos, F., A. Colaço, P. Dando, S. Ávila, P. Sarradin, F. Tempera, P. Conceição, A. Pascoal and R. Santos. – 2005. Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chem. Geol., 224: 153-68. doi:10.1016/j.chemgeo.2005.07.019

Clarke, K.R. and R.M. Warwick. – 2001. Change in Marine Communities - An Approach to Statistical Analysis and Interpretation. Primer-E Ltd., Plymouth.

Clarke, K.R. and R.N. Gorley. – 2006. PRIMER v6: User Manual/ Tutorial. PRIMER-E, Plymouth.

Clemmesen, C. and H. Röhrscheidt. – 2004. Does the Great Meteor Seamount affects growth and condition of fish larva with special reference to Vinciguerria nimbaria? Arch. Fish. Mar. Res., 51(Suppl. 1-3): 187-200.

Diekmann, R. and U. Piatkowski. – 2004. Species composition and distribution patterns of early life stages of cephalopods at Great Meteor Seamount (subtropical North-east Atlantic). Arch. Fish. Mar. Res., 51(Suppl. 1-3): 115-131.

Dower, J.F. and R.I. Perry. – 2001. High abundance of larval rock fish over Cobb Seamount, an isolated seamount in the Northeast Pacific. Fish. Oceanogr., 10(3), 268-274. doi:10.1046/j.1365-2419.2001.00162.x

Floeter, S., R. Guimarães, R. Rocha, C. Ferreira, C. Rangel and J. Gasparini. – 2001. Geographic variation in reef-fish assemblages along the Brazilian coast. Global Ecol. Biogeogr., 10: 423-431. doi:10.1046/j.1466-822X.2001.00245.x

Fock, H., F. Uiblein, F. Köster and H. von Westernhagen. – 2002. Biodiversity and species-environment relationships of the demersal fish assemblage at the Great Meteor Seamount (subtropical NE Atlantic), sampled by different trawls. Mar. Biol., 141: 185-199. doi:10.1007/s00227-002-0804-y

Froese, R. and D. Pauly. – 2007. FishBase. World Wide Web electronic publication, www.fishbase.org, July, 20th 2007.

Gad, G. and H.K. Schmitnke. – 2004. How important are seamounts for the dispersal of meiofauna? Arch. Fish. Mar. Res., 51(Suppl. 1-3): 43-54.

Goldner, D. and D. Chapman. – 1997. Flow and particle motion induced above a tall seamount by steady and tidal background currents. Deep-Sea Res. Part I, 44(Suppl. 5): 719-744.

Gonçalves, J.M.S., J. Bispo and J. Augusto. – 2004. Underwater survey of ichthyofauna of eastern Atlantic seamounts: Gettysburg and Ormond (Gorringe Bank). Arch. Fish. Mar. Res., 51(Suppl. 1-3): 233-240.

Harmelin-Vivien M., J. Harmelin, C. Chauvet, C. Duval, R. Galzin, P. Lejeune, G. Barnabé, F. Blanc, R. Chevalier, J. Duclerc and G. Lasserre. – 1985. Évaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Revue d’Ecologie: La Terre et la Vie, 40: 457-539.

Heinz, P., D. Ruepp and C. Hemleben. – 2004. Benthic foraminifera assemblages at Great Meteor Seamount. Mar. Biol., 144: 985-998. doi:10.1007/s00227-003-1257-7

IUCN. – 2007. IUCN Red List of Threatened Species. www.iucnredlist.org, Downloaded on July, 20th 2007.

Joyeux, J., S. Floeter, C. Ferreira and J. Gasparini. – 2001. Biogeography of tropical reef fishes: the South Atlantic puzzle. J. Biogeogr., 28: 831-841. doi:10.1046/j.1365-2699.2001.00602.x

Kitchingman A. and S. Lai. – 2004. Inferences on potential seamount locations from Mid-resolution bathymetric data. In: T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, 12(Suppl. 5), pp. 7-12. Fisheries Centre Research Reports. Fisheries Centre, University of British Columbia, Canada.

Koslow, J.A. – 1997. Seamounts and the ecology of deep-sea fisheries. Am. Sci., 85: 168-176.

Koslow, J.A., K. Gowlett-Holmes, J.K. Lowry, T. O’Hara, G.C.B. Poore, and A. Williams. – 2001. Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Mar. Ecol. Prog. Ser., 213: 111-125. doi:10.3354/meps213111

Lessios, H., B. Kessing and D. Robertson. – 1998. Massive gene flow across the world’s most potent marine biogeographic barrier. Proc. R. Soc. Lond., B, 265: 583-588. doi:10.1098/rspb.1998.0334

Lloris, D., J. Rucabado and H. Figueroa. – 1991. Biogeography of the Macaronesian Ichthyofauna. Bol. Mus. Munic. Funchal, 43(Suppl. 234): 191-241.

Luiz-Júnior, O., S. Floeter, J. Gasparini, C. Ferreira and P. Wirtz. – 2004. The occurrence of Acanthurus monroviae (Perciformes: Acanthuridae) in the south-western Atlantic, with comments on other eastern Atlantic reef fishes occurring in Brasil. J. Fish. Biol., 65: 1173-1179. doi:10.1111/j.0022-1112.2004.00519.x

Magnússon, J. and J. Magnússon. – 1985. Survey of demersal fish resources in the waters off Cape Verde Islands in May/June 1984. II. Report. ICEIDA/Cape Verde Islands Fisheries Project, Icelandic International Development Agency/Marine Research Institute, Reykjavík.

Margalef, R. – 1975. Diversity, stability and maturity in natural ecosystems. In: W.H. van Dobben and R.H. Lowe-McConnell (eds.), Unifying concepts in ecology, pp. 139-150. Junk, The Hague.

Mitchell-Thomé, R. – 1972. Outline of the geology of the Cape Verde Archipelago. Int. J. Earth Sci., 61(Suppl. 3): 1087-1109.

Mohn, C. and A. Beckmann. – 2002. The upper ocean circulation at Great Meteor Seamount, Part I: structure of density and flow fields. Ocean Dynamics, 52: 179-193.

Moore, J., M. Vecchione, B. Collette, R. Gibbons, K. Hartel, J. Galbraith, M. Turnipseed, M. Southworth and E. Watkins. – 2004. Biodiversity of Bear Seamount, New England Seamount chain: Results of exploratory trawling. Arch. Fish. Mar. Res., 51(Suppl. 1-3): 241-250.

Pálsson, O. – 1988. A random stratified survey of demersal fish species in the waters of Cape Verde 1988. Icelandic International Development Agency, Reykjavík.

Pérez-Ruzafa, A., C. Marcos and J.J. Bacallado. – 2005. Biodiversidad marina en archipiélagos e islas: patrones de riqueza específica y afinidades faunística. Vieraea, 33: 455-475.

Reiner, F. – 1996. Catálogo dos Peixes do Arquipélago de Cabo Verde. Publicações avulsas do IPIMAR. Instituto Português de Investigação Marítima, No 2, Lisboa.

Stromme, T., S. Stundby and G. Saetersdal. – 1981. A survey of the fish resources in the coastal waters of the Republic of Cap Verd. Reports on surveys with the R/V Dr. Fridtjof Nansen, Institute of Marine Research, Bergen.

Thorsteinsson, V., V. Monteiro and E. Almada. – 1995. Ground fish survey in the waters off Cabo Verde 1994. Icelandic International Development Agency (ICEIDA)/Cape Verde Islands Fisheries Project, Icelandic International Development Agency/ Marine Research Institute, Reykjavík.

Trasvinã-Castro, A., G. Gutierrez de Velasco, A. Valle-Levinson, R. González-Armas, A. Muhliad and M. Cosio. – 2003. Hydrographic observations of the flow in the vicinity of a shallow seamount top in the Gulf of California. Estuar. Coast. Shelf Sci., 57: 149-162. doi:10.1016/S0272-7714(02)00338-4

Whitehead, P., M. Bauchot, J. Hureau, J. Nielsen and E. Tortonese. – 1986. Fishes of the Northeastern Atlantic and the Mediterranean (FNAM), Volume I, II and III, UNESCO, Paris.

Wilson, S., C. Blake, J.A. Berges and C.A. Maggs. – 2004. Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol. Conserv., 120: 283-293. doi:10.1016/j.biocon.2004.03.001

Zhou, M., J. Paduan and P. Niiler. – 2000. Surface currents in the Canary Basin from drifter observations. J. Geophys. Res., 105: 21893-21911. doi:10.1029/2000JC900096




Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es