Scientia Marina, Vol 81, No 2 (2017)

Comparison of anisakid infection levels between two species of Atlantic mackerel (Scomber colias and S. scombrus) off the Atlantic Portuguese coast


https://doi.org/10.3989/scimar.04552.26A

Maria João Santos
Faculty of Sciences of University of Porto, Biology Department, Animal Pathology Laboratory, - CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Portugal
orcid http://orcid.org/0000-0001-6655-491X

Ricardo Castro
Faculty of Sciences of University of Porto, Biology Department, Animal Pathology Laboratory, - CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Portugal
orcid http://orcid.org/0000-0002-4381-3605

Francisca Cavaleiro
Faculty of Sciences of University of Porto, Biology Department, Animal Pathology Laboratory, - CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Portugal
orcid http://orcid.org/0000-0001-9978-3401

Luis Rangel
Faculty of Sciences of University of Porto, Biology Department, Animal Pathology Laboratory, - CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto , Portugal
orcid http://orcid.org/0000-0002-8503-7763

Harry Wilhelm Palm
Rostock University, Faculty of Agricultural and Environmental Sciences, Aquaculture und Sea Ranching
orcid http://orcid.org/0000-0003-2918-3253

Abstract


Anisakiasis is a problematic zoonotic infection associated with the consumption of raw or undercooked fish. Atlantic mackerel (Scomber colias) is of high commercial interest in Portugal and has been reported as a common host of Anisakisspp. In this study, the occurrence of anisakids is evaluated in S. colias and also Scomber scombrus, and the potential zoonotic risk associated with consumption of these two fishes is evaluated according to the recorded infection levels. These were found to be high for both fish species: a mean intensity and prevalence of 21.7 worms/fish and 85% for S. colias, and 16.4 worms/fish and 83.3% for S. scombrus, respectively. No correlation was detected between anisakid intensity and host total length, total weight, condition factor, and hepatosomatic and gonadosomatic indices for both fish species, but significantly higher intensity values were detected for more mature S. scombrus, i.e. fish recording a higher gonadosomatic index. Molecular tools allowed the identification of two species of Anisakis, A. simplex (s.s.) and A. pegreffii. They differed in their occurrence: in S. colias the prevalence of A. simplex (s.s.) was 18% and that of A. pegreffii was 82%, whereas in S. scombrus the prevalence of A. simplex (s.s.) was 73% and that of A. pegreffii was 27%. Occasionally, worms of Hysterothylacium aduncum were identified for both fish. The different infection levels of the two Anisakisspecies in both hosts off the Portuguese coast raise the hypothesis of a different life cycle at the level of the invertebrate intermediate host. S. colias lives in deeper waters than S. scombrus, and the differences found in infection levels suggest that A. pegreffii main first intermediate host also live in deeper waters, compared with A. simplex (s.s.) main first intermediate host. The higher infection levels of A. simplex (s.s.) (most infectious to humans) in S. scombrus suggest that its consumption when slightly cooked, as in grilled fish (so popular in Portugal), could be more problematic for the development of anisakiasis in humans than the consumption of S. colias and thus be of potential public health concern.

Keywords


anisakids; Anisakis pegreffii; Anisakis simplex (s.s.); Atlantic mackerels; Portuguese coast; molecular identification; food safety

Full Text:


HTML PDF XML

References


Abattouy N., Valero A., Benajiba M.H., et al. 2011. Anisakis simplex s.l. parasitization in mackerel (Scomber japonicus) caught in the North of Morocco - Prevalence and analysis of risk factors. Int. J. Food Microbiol. 150: 136-139. https://doi.org/10.1016/j.ijfoodmicro.2011.07.026 PMid:21868119

Abattouy N., Lopez A.V., Maldonado J.L., et al. 2013. Epidemiology and molecular identification of Anisakis pegreffii (Nematoda: Anisakidae) in the horse mackerel Trachurus trachurus from northern Morocco. J. Helminthol. 88: 257-263. https://doi.org/10.1017/S0022149X13000102 PMid:23461880

Abollo E., Gestal C., Pascual S. 2001. Anisakis infestation in marine fish and cephalopods from Galician waters: an updated perspective. Parasitol. Res. 87: 492-499. https://doi.org/10.1007/s004360100389 PMid:11411952

Abollo E., Paggi L., Pascual S., et al. 2003. Occurrence of recombinant genotypes of Anisakis simplex s.s. and Anisakis pegreffii (Nematoda: Anisakidae) in an area of sympatry. Infect. Genet. Evol. 3: 175-181. https://doi.org/10.1016/S1567-1348(03)00073-X

Arizono N., Yamada M., Tegoshi T., et al. 2012. Anisakis simplex sensu stricto and Anisakis pegreffii: biological characteristics and pathogenetic potential in Human Anisakiasis. Foodborne Pathog. Dis. 9: 517-521. https://doi.org/10.1089/fpd.2011.1076 PMid:22545961

Audicana M.T., Ansotegui I.J., Fernández de Corres L. et al. 2002. Anisakis simplex: dangerous – dead and alive? Trends Parasitol. 18: 20-25. https://doi.org/10.1016/S1471-4922(01)02152-3

Audicana M.T., del Pozo M.D., Iglesias R., et al. 2003. Anisakis simplex and Pseudoterranova decipiens. In: Miliotis M.D., Bier J.V. International Handbook of Foodborne Pathogens. CRC Press, pp. 613-636. https://doi.org/10.1201/9780203912065.ch38

Bush A.O., Lafferty K.D., Lotz, J.M., et al. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83: 575-583. https://doi.org/10.2307/3284227 PMid:9267395

Collette B.B. 1986. Scombridae. In: Whitehead P.J.P., Bauchot M.- L., Hureau J.-C., et al. (eds) Fishes of the North-eastern Atlantic and the Mediterranean. vol 2. Unesco, United Kingdom, pp. 981-997.

Chou Y.-Y., Wang C.-S., Chen H.-G., et al. 2011. Parasitism between Anisakis simplex (Nematoda: Anisakidae) third-stage larvae and the spotted mackerel Scomber australasicus with regard to the application of stock identification. Vet. Parasitol. 177: 324-331. https://doi.org/10.1016/j.vetpar.2010.12.003 PMid:21211909

Costa G., Pontes T., Mattiucci S., et al. 2003. The occurrence and infection dynamics of Anisakis larvae in the black-scabbard fish, Aphanopus carbo, chub mackerel, Scomber japonicus, and oceanic horse mackerel, Trachurus picturatus from Madeira, Portugal. J. Helminthol. 77: 163-166. https://doi.org/10.1079/JOH2002156 PMid:12756070

Costa G., Madeira A., Pontes T. et al. 2004. Anisakid nematodes of the blackspot seabream, Pagellus bogaraveo, from Madeiran waters, Portugal. Acta Parasitologica. 49: 156-161.

Cremonte F., Sardella N.H. 1997. The parasito fauna of Scomber japonicus Houttuyn, 1782 (Pisces: Scombridae) in two zones of the Argentine Sea. Fish. Res. 31: 1-9. https://doi.org/10.1016/S0165-7836(97)00024-6

Cruz C., Barbosa C., Saraiva A. 2007. Distribution of larval anisakids in blue whiting off Portuguese fish market. Helminthol. 44: 21-24. https://doi.org/10.2478/s11687-006-0051-8

Cruz C., Saraiva A., Santos M.J., et al. 2009. Parasitic infection levels by Anisakis spp. larvae (Nematoda: Anisakidae) in black scabbardfish Aphanopus carbo (Osteichthyes: Trichiuridae) from Portuguese waters. Sci. Mar. 73S2: 115-120.

Direcção Geral de Recursos Naturais, Segurança e Serviços Marítimos (DGRM). 2015. Estatística da Pesca 2014. Instituto Nacional de Estatística, I.N.E.I.P., Lisboa.

European Union (E.U.). 9 December 2011. Regulation no 1276/2011 of the European Parliament and of the Council amending annex III to regulation (EC) no 853/2004 of the European Parliament and of the Council as regards the treatment to kill viable parasites in fishery products for human consumption. Eur. Lex 54: 39.

EUMOFA. 2016. The EU fish market. Accessed on 18/10/2016 at https://www.eumofa.eu/documents/20178/77960/ The+EU+fish+market+-+2016+Edition.pdf

Farjallah S., Slimane B.B., Busi M., et al. 2008. Occurrence and molecular identification of Anisakis spp. from the North African coasts of Mediterranean Sea. Parasitol. Res. 102: 371-379. https://doi.org/10.1007/s00436-007-0771-9 PMid:18026753

Gregori M., Roura A., Abollo E., et al. 2015. Anisakis simplex complex (Nematoda: Anisakidae) in zooplankton communities from temperate NE Atlantic waters. J. Nat. Hist. 49: 13-14. https://doi.org/10.1080/00222933.2014.979260

Hall T.A. 1999. BioEdit a user-friendly biology sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.

Hauck A. K. 1977. Occurrence and survival of the larval nematode Anisakis sp. in the flesh of fresh, frozen, brined, and smoked Pacific Herring, Clupea harengus pallasi. J. Parasitol. 63: 515-519. https://doi.org/10.2307/3280014 PMid:559067

Hermida M., Mota R., Pacheco C.C., et al. 2012. Infection levels and diversity of anisakid nematodes in blackspot seabream, Pagellus bogaraveo, from Portuguese waters. Parasitol. Res. 110: 1919-1928. https://doi.org/10.1007/s00436-011-2718-4 PMid:22139402

Jovani R., Tella J.L. 2006. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 22: 214-218. https://doi.org/10.1016/j.pt.2006.02.011 PMid:16531119

Koie M. 2001. Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheated and large third-stage larvae of Anisakis simplex (Nematoda, Ascaridoidea, Anisakidae). Parasitol. Res. 87: 32-36. https://doi.org/10.1007/s004360000288 PMid:11199846

Kijewska A., Dzido J., Shukhgalter O., et al. 2009. Anisakid parasites of fishes caught on the African shelf. J. Parasitol. 95: 639-645. https://doi.org/10.1645/GE-1796.1 PMid:19093709

Kuhn T., García-Màrquez J., Klimpel S. 2011. Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites. PLoS ONE 6: e28642. https://doi.org/10.1371/journal.pone.0028642 PMid:22180787 PMCid:PMC3236750

Kuhn T., Hailer F., Palm H.W., et al. 2013. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol. 60: 123-134. https://doi.org/10.14411/fp.2013.013

Lloris D., Moreno T. 1995. Distribution model and association in three pelagic congeneric species (Trachurus spp.) present in the Mediterranean Iberic Sea. Sci. Mar. 59: 399-403.

MacCarthy J., Moore T.A. 2000. Emerging helminth zoonoses. Int. J. Parasitol. 30: 1351-1360. https://doi.org/10.1016/S0020-7519(00)00122-3

Marques J.M., Cabral H.N., Busi M., et al. 2006. Molecular identification of Anisakis species from Pleuronectiformes off the Portuguese coast. J. Helminthol. 80: 47-51. https://doi.org/10.1079/JOH2005325 PMid:16469172

Mattiucci M., Nascetti G. 2008. Advances and trends in the molecular systematics of Anisakid Nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv. Parasitol. 66: 47-148. https://doi.org/10.1016/S0065-308X(08)00202-9

Mattiucci M., Nascetti G., Gianchi R., et al. 1997. Genetic and ecological data on the Anisakis simplex complex, with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). J. Parasitol. 83: 401-406. https://doi.org/10.2307/3284402 PMid:9194819

Mattiucci S., Fazii P., De Rosa A., et al. 2013. Anisakiasis and gastroallergic reaction associated with Anisakis pegreffii infection, Italy. Emerg. Infect. Dis. 19: 496–499. https://doi.org/10.3201/eid1903.121017 PMid:23621984 PMCid:PMC3647659

Mehrdana F., Bahlool Q., Skov J., et al. 2014. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205: 581-587. https://doi.org/10.1016/j.vetpar.2014.08.027 PMid:25224792

Mladineo I. 2003. Anisakis simplex in the Adriatic Sea. Periodicum. Biologorum 105: 389-392.

Mladineo I., Poljak V. 2014. Ecology and Genetic Structure of Zoonotic Anisakis spp. from Adriatic. Appl. Environ. Microb. 80: 1281-1290. https://doi.org/10.1128/AEM.03561-13 PMid:24317085 PMCid:PMC3911056

Moravec F. 1998. Nematodes of freshwater fishes of the neotropical region. Academia Praha, Institute of Parasitology, Academy of Sciences of the Czech Republic, pp. 381-383.

Nunes C., Ladeira S., Mergulhão A. 2003. Allergy to Anisakis simplex in the Portuguese Population. Rev. Port. Imunoalergologia XI: 30-40. https://doi.org/10.1016/S0091-6749(03)80911-9

Pontes T., D'Amelio S., Costa G., et al. 2005. Molecular characterization of larval Anisakid nematodes from marine fishes of Madeira by PCR-based approach, with evidence for a new species. J. Parasitol. 91: 1430-1434. https://doi.org/10.1645/GE-565R1.1 PMid:16539027

Rego A.A., Carvalho-Varela M., Mendonça M.M., et al. 1985. Helmintofauna da sarda (Scomber scombrus L.) peixe da costa continental portuguesa. Mem. I. Oswaldo Cruz 80: 97-100. https://doi.org/10.1590/S0074-02761985000100015

Shukhgalter O.A. 2004. The parasite fauna of the chub mackerel (Scombridae: Scomber japonicus Houttuyn, 1782) in the central-eastern Atlantic (Atlantic coast of Northern Africa and the Azores Archipelago banks). Parazitol. 38: 160-170.

Smith J. 1983. Anisakis simplex: Morphology and morphometry of larvae from euphausiids and fish, and a review of the life-history and ecology. J. Helminthol. 57: 205-224. https://doi.org/10.1017/S0022149X00009512 PMid:6685155

Smith J. W., Wootten R. 1975. Experimental studies on the migration of Anisakis sp. larvae (Nematoda: Ascaridida) into the flesh of herring, Clupea harengus L. Int. J. Parasitol. 5: 133-136. https://doi.org/10.1016/0020-7519(75)90019-3

Smrzli? V., Vali? D., Kapetanovi? D., et al. 2012. Molecular characterisation of Anisakidae larvae from fish in Adriatic Sea. Parasitol. Res. 111: 2385-2391.

Suzuki J., Murata R., Hosaka M., et al. 2010. Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. Int. J. Food Microbiol. 137: 88-93. https://doi.org/10.1016/j.ijfoodmicro.2009.10.001 PMid:19892425

Ubeira F.M., Valinas B., Lorenzo S., et al. 2000. Anisaquiosis y alergia. Un estudio seroepidemiológico en la Comunidad Autónoma Gallega. Documentos Técnicos de Salud Pública, Serie B, 24. Ed. Conselleria de Sanidade e Servicios sociais (Xunta de Galicia, Espa-a).

Umehara A., Kawakami Y., Araki J., et al. 2007. Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitol Int. 56: 211-215. https://doi.org/10.1016/j.parint.2007.02.005 PMid:17428725




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us scimar@icm.csic.es

Technical support soporte.tecnico.revistas@csic.es