Ácidos grasos como marcadores de las relaciones tróficas entre el seston, el zooplancton crustáceo y el sifonófo Nanomia cara en Georges Basin y el Cañón Oceanographer (NO Atlántico)

Autores/as

  • Sergio Rossi Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona
  • Marsh J. Youngbluth Harbor Branch Oceanographic Institution, Fort Pierce, Florida
  • Charles A. Jacoby Department of Fisheries and Aquatic Sciences, University of Florida
  • Francesc Pagès Institut de Ciències del Mar (CSIC), Barcelona
  • Xènia Garrofé Institut de Ciències del Mar (CSIC), Barcelona

DOI:

https://doi.org/10.3989/scimar.2008.72n2403

Palabras clave:

ácidos grasos, relaciones tróficas, sifonóforos, Golfo del Maine

Resumen


En este estudio se utilizaron las concentraciones de ácidos grasos (expresadas como porcentajes) para identificar posibles relaciones tróficas entre el seston, el estadio V (copepoditos) de Calanus finmarchicus, los adultos del eufáusido Meganyctiphanes norvegica, y el sifonóforo fisonecto Nanomia cara en Georges Basin y el cañón submarino Oceanographer durante Septiembre de 2003. En ambos lugares el seston era muy refractario y compuesto básicamente por ácidos grasos saturados. El fitoplancton no contribuyó de forma significativa a la composición de ácidos grasos del seston o de niveles tróficos superiores. Sólo cuatro ácidos grasos [14:0, 16:0, 16:1 (n–7) y 18:1 (n–7)] se transfirieron potencialmente del seston a C. finmarchicus o M. norvegica, lo que sugiere una débil conexión trófica entre estos eslabones de la cadena. Los ácidos grasos transferidos de las dos especies de zooplancton crustáceo a N. cara incluyen los mismos descritos más arriba y otros tres ácidos grasos poliinsaturados [20:3 (n–6), 20:5 (n–3) y 22:6 (n–3)] encontrados en concentraciones relativamente elevadas en ambos crustáceos. Además, tanto el 18:1 (n–9) (encontrado en elevadas concentraciones en M. norvegica) y los 18:0 y 18:2 (n–6) (encontrados en bajas concentraciones en ambas especies de crustáceos) se transfieren a N. cara. Los ácidos grasos demuestran ser una herramienta útil para identificar conexiones tróficas en N. cara.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ackman, R.G., C.A. Eaton, J.C. Sipos, S.N. Hooper and J.D. Castell. – 1970. Lipids and fatty acids of two species of North Atlantic krill (Meganyctiphanes norvegica and Thysanoëssa inermis) and their role in the aquatic food web. J. Fish. Res. Bd. Canada, 27: 513-533.

Albers, C.S., G. Kattner and W. Hagen. – 1996. The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar. Chem., 55: 347-358.

Albessard, E., P. Mayzaud and J. Cuzin–Roudy. – 2001. Variation of lipid classes among organs of the northern krill Meganyctiphanesnorvegica, with respect to reproduction. Comp. Biochem. Physiol. A, 129: 373-390.

Alldredge, A.L. and M.J. Youngbluth. – 1985. The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep-Sea Res., 32: 1445-1456.

Baldi, F., A. Minacci, A. Saliot, L. Mejanelle, P. Mozetic, V. Turk and A. Malej. – 1997. Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes. Mar. Ecol. Prog. Ser., 153: 45-57.

Båmstedt, U. and K. Karlson. – 1998. Euphausiid predation on copepods in coastal waters of the Northeast Atlantic. Mar. Ecol. Prog. Ser., 172: 149-168.

Belbin, L. – 1989. PATN Technical Reference. CSIRO Division of Wildlife and Ecology, Lyneham, Australian Capital Territory, Australia.

Biggs, D.C., R.R. Bidigare and D.E. Smith. – 1981. Population density of gelatinous macrozooplankton: in situ estimation in oceanic surface waters. Biol. Oceanogr., 1: 157-173.

Bisagni, J.J. – 2003. Seasonal variability of nitrate supply and potential new production in the Gulf of Maine and Georges Bank regions. J. Geop. Res., 108 (C–11): Article no. 8015.

Dalsgaard, J. and M. St John. – 2004. Fatty acid biomarkers: validation of food web and trophic markers using 13C–labeled fatty acids in juvenile sandeel (Ammodytes tobianus). Can. J. Fish. Aquat. Sci., 61: 1671-1680.

Dalsgaard, J., M. St. John, G. Kattner, D. Müller–Navarra and W. Hagen. – 2003. Fatty acid trophic markers in the pelagic marine environment: a review. Adv. Mar. Biol., 46: 225-340.

Doval, M.D., F.F. Pérez and E. Berdalet. – 1999. Dissolved and particulate organic carbon and nitrogen in the Northwestern Mediterranean. Deep-Sea Res., 46: 511-527.

Durbin, E.G., J.A. Runge, R.G. Campbell, P.R. Garrahan, M.C. Casas and S. Plourde. – 1997. Late fall – early winter recruitment of Calanus finmarchicus on Georges Bank. Mar. Ecol. Prog. Ser., 151: 103-114.

Fahl, K. and G. Kattner. – 1993. Lipid content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Pol. Biol., 13: 405-409.

Falk–Petersen, S., T.M. Dahl, C.L. Scott, J.R. Sargent, B. Gulliksen, S. Kwasniewski, H. Hop, and R.M. Millar. – 2002. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Mar. Ecol. Prog. Ser., 227: 187-194.

Falk-Petersen, S., J.R. Sargent and K. Tande. – 1987. Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biol., 8: 115-120.

Fukuda, Y. and T. Naganuma. – 2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar. Biol., 138: 1029-1035.

Gorsky, G., P.R. Flood, M. Youngbluth, M. Picheral and J.M. Grison. – 2000. Zooplankton distribution in four Western Norwegian Fjords. Est. Coast. Shelf Sci., 50: 129-135.

Goutx, M. and A. Saliot. – 1980. Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean sea. Mar. Chem., 8: 299-318.

Graeve, M., G. Kattner and W. Hagen. – 1994. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: experimental evidence of trophic markers. J. Exp. Mar. Biol. Ecol., 182: 97-l10.

Hartman, O. and K.O. Emery. – 1956. Bathypelagic coelenterates. Limnol. Oceanogr., 1: 304-312.

Hudson, I.R., D.W. Pond, D.S.M. Billet, P.A. Tyler, R.S. Lampitt and G.A. Wolff. – 2004. Temporal variations in fatty acid composition of deep-sea holothurians: evidence of bentho-pelagic coupling. Mar. Ecol. Prog. Ser., 281: 109-120.

Kattner, G., H.J. Hirche and M. Krause. – 1989. Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Mar. Biol., 102: 473-480.

Kattner, G. and M. Krause. – 1987. Changes in lipids during the development of Calanus finmarchicus s.l. from Copepodid I to adult. Mar. Biol.: 96: 51l-518.

Kirsch, P.E., S.J. Iverson, W.D. Bowen, S.R. Kerr and R.G. Ackman. – 1998. Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci., 55: 1378-1386.

Klungsøyr, J., S. Tilseth, S. Wilhelmsen, S. Falk-Petersen and J.R. Sargent. – 1989. Fatty acid composition as an indicator of food intake in cod larvae Gadus morhua from Lofoten, Northern Norway. Mar. Biol., 102: 183-188.

Larson, R.J. and G.R. Harbison. – 1989. Source and fate of lipids in polar gelatinous zooplankton. Arctic, 42: 339-346. Lass, S., G.A. Tarling, P. Virtue, J.B.L. Matthews, P. Mayzaud and F. Buchholz. – 2001. On the food of northern krill Meganyctiphanes norvegica in relation to its vertical distribution. Mar. Ecol. Prog. Ser., 214: 177-200.

Mayzaud, P., J.P. Chanut and R.G. Ackman. – 1989. Seasonal changes of biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser., 56: 189-204.

Mayzaud, P., P. Virtue and E. Albessard. – 1999. Seasonal variations in the lipid and fatty acid composition of the euphausiid Meganyctiphanes norvegica from the Ligurian Sea. Mar. Ecol. Prog. Ser., 186: 199-210.

Miller, C.B., T.J. Cowles, P.H. Wiebe, N.J. Copley and H. Grigg. – 1991. Phenology in Calanus finmarchicus; hypotheses about control mechanisms. Mar. Ecol. Prog. Ser., 72: 79-91.

Mills, C.E. – 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J. Mar. Sci., 52: 575-581.

Nelson, M.M., C.F. Phleger, B.D. Mooney and P.D. Nichols. – 2000. Lipids of gelatinous Antarctic zooplankton: cnidaria and ctenophore. Lipids, 35: 551-559.

Pagès, F. and F. Kurbjewit. – 1994. Vertical distribution and abundance of mesoplanktonic medusae and siphonophores from the Weddell Sea, Antarctica. Polar Biol., 14: 243-251.

Pagès, F., H.E. González, M. Ramón, M. Sobarzo and J.M. Gili. – 2001. Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact of Bassia bassensis (Siphonophora: Calycophorae). Mar. Ecol. Prog. Ser., 210: 13-24.

Parrish, C.C., R.J. Thompson and D. Deibel. – 2005. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar. Ecol. Prog. Ser., 286: 57-68.

Patriti, G. – 1995. Distribution spatio-temporelle des siphonophores au dessus des marges atlantique et méditerranéenne. Mar. Nat., 4: 1-21.

Pedersen, L., H.M. Jensen, A.D. Burmeister and B.W. Hansen.– 1999. The significance of food web structure for the condition and tracer lipid content of juvenile snail fish (Pisces: Liparis spp.) along 65-72º N off West Greenland. J. Plank. Res., 21: 1593-1611.

Pugh, P.R. – 1975. The distribution of siphonophores in a transect across the North Atlantic Ocean at 32ºN. J. Exp. Mar. Biol. Ecol., 20: 77-97.

Purcell, J.E. – 1983. Digestion rates and assimilation efficiencies of siphonophores fed zooplankton prey. Mar. Biol., 73: 257-261.

Purcell, J.E. – 1991. A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia, 216/217: 335-342.

Purcell, J.E., J.R. White and M.R. Roman. – 1994. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol. Oceanogr., 39: 263-278.

Reuss, N. and L.K. Poulsen. – 2002. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol., 141: 423-434.

Robison, B.H. – 2004. Deep pelagic biology. J. Exp. Mar. Biol. Ecol., 300: 253-272.

Robison, B.H., K.R. Reisenbichler, R. Sherlock, J.M.B. Silguero and F.P. Chavez. – 1998. Seasonal abundance of Nanomia bijuga in Monterrey Bay. Deep-Sea Res. II, 45: 1741-1751.

Rogers, C.A., D.C. Biggs and R.A. Cooper. – 1978. Aggregation of the siphonophore Nanomia cara the Gulf of Maine: observations from a submersible. Fish. Bull., 76: 281-284.

Roman, M.R., D.A. Caron, P. Kremer, E.J. Lessard, L.P. Madin, T.C. Malone, J.M. Napp, E.R. Peele and M.J. Youngbluth. – 1995. Spatial and temporal changes in the partitioning of organic carbon in the plankton community of the Sargasso Sea off Bermuda. Deep-Sea Res. Part I, 42: 973-992.

Rossi, S and J.M. Gili. – 2005. Temporal variation and composition of near-bottom seston features in a Mediterranean coastal area. Est. Coast. Shelf Sci., 65: 385-395.

Rossi, S., A. Sabatés, M. Latasa and E. Reyes. – 2006. Lipid biomarkers and trophic linkages between phytoplankton, microzooplankton and the anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. J. Plank. Res., 28: 551-562.

Sargent, J.R. and S. Falk-Petersen. – 1981. Ecological investigations on the zooplankton community in Balsfjorden, northern Norway: Lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and T. inermis during mid-winter. Mar. Biol., 62: 131-137.

Saumweber, W.J. and E.G. Durbin. – 2006. Estimating potencial diapause duration in Calanus finmarchicus. Deep-Sea Res. Part II, 53: 2597-2617.

Scott, C.L., S. Kwasniewski, S. Falk-Petersen, R.M. Millar and J.R. Sargent. – 2000. Life strategy of arctic copepods: stage distribution and lipids of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjord, Svalbard. Polar Biol., 23: 510-516.

Scott, C.L., S. Kwasniewski, S. Falk-Petersen, R.M. Millar and J.R. Sargent. – 2002. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C. glacialis and C. finmarchicus from Arctic waters. Mar. Ecol. Prog. Ser., 235: 127-134.

Silver, M.W. and A.L. Alldredge. – 1981. Bathypelagic marine snow: deep sea algal and detrital community. J. Mar. Res., 39: 501-530.

Skerratt, J.H., P.D. Nichols, T.A. McMeekin and H. Burton. – 1995. Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Mar. Chem., 51: 93-l13.

Sommer, U., H. Stibor, A. Katechakis, F. Sommer and T. Hansen. – 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia, 484: 11-20.

St. John, M.A. and T. Lund. – 1996. Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile North Sea cod. Mar. Ecol. Prog. Ser., 131: 75-85.

Townsend D.W. and M. Thomas. – 2002. Springtime nutrient and phytoplankton dynamics on Georges Bank. Mar. Ecol. Prog. Ser., 228: 57-74.

Virtue, P., P. Mayzaud, E. Alberssard and P. Nichols. – 2000. Use of fatty acids as dietary indicators in northern krill, Meganyctiphanes norvegica, from northeastern Atlantic, Kattegat, and Mediterranean waters. Can. J. Fish. Aquat. Sci., 57: 104-114.

Youngbluth, M.J. – 1984. Manned submersibles and sophisticated instrumentation: tools for oceanographic research. In: Proceedings of Subtech 83 Symposium, pp. 335-344. Society for Underwater Technology, London.

Youngbluth, M.J. and U. Båmstedt. – 2001. Distribution, abundance, behavior and metabolism of Periphylla periphylla, a mesopelagic coronate medusa in a Norwegian fjord. Hydrobiologia, 451: 321-333.

Descargas

Publicado

2008-06-30

Cómo citar

1.
Rossi S, Youngbluth MJ, Jacoby CA, Pagès F, Garrofé X. Ácidos grasos como marcadores de las relaciones tróficas entre el seston, el zooplancton crustáceo y el sifonófo Nanomia cara en Georges Basin y el Cañón Oceanographer (NO Atlántico). Sci. mar. [Internet]. 30 de junio de 2008 [citado 27 de julio de 2024];72(2):403-16. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/942

Número

Sección

Artículos

Artículos más leídos del mismo autor/a