Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae
DOI:
https://doi.org/10.3989/scimar.2006.70n4727Palabras clave:
Sabella spallanzanii, actividad del abanico, ritmos circadianos, encarrilamientoResumen
En este trabajo, se estudiaron el ritmo de apertura del abanico del poliqueto Sabella spallanzanii (Gmelin, 1791) y su capacidad de encarrilamiento a la luz. Los animales fueron expuestos bajo oscuridad constante (DD) seguida por dos regímenes consecutivos de luz-oscuridad de 24 h, el primero compuesto por 11 h de luz (LD), y el segundo por 9 h de luz y con su fase invertida (DL). Dicha actividad se midió utilizando fotogramas tomados cada 30 s, mediante una videocámara analógica provista de iluminación infrarroja. Los fotogramas mostrando el abanico abierto fueron sumados cada 15 min. En DD, se detectó una periodicidad débil, en curso libre de rango circadiano en todos los animales. El ritmo se mostró más robusto y asumió un valor de 24 h bajo los dos fotoperíodos empleados. Se evidenció una actividad nocturna con anticipación (encarrilamiento) al apagado de la luz. Además, esta fase de encarrilamiento fue diferente entre LD y DL. La presencia de un ritmo de actividad endógeno con una fase de encarrilamiento variable, sugiere la presencia de un oscilador circadiano.
Descargas
Citas
Aguzzi, J., P. Abelló, and M. Depledge. – 2004. The endogenous cardiac activity rhythm of the Northwestern Mediterranean Nephrops norvegicus (L.) inhabiting the upper slope. Mar. Freshw. Behav. Physiol., 37: 55-64. doi:10.1080/1023624042000199890
Aguzzi, J., J.J. Chiesa, P. Abelló, and A. Díez-Noguera. – 2005. Temporal modification in cardiac rhythmicity of Nephrops norvegicus (Crustacea: Decapoda) in relation to trawl capture stress. Sci. Mar., 69(3): 369-374.
Aguzzi, J., and J.J. Chiesa. – 2005. Cardiac activity of Nephrops norvegicus (Decapoda: Nephropidae): the relationships between circadian and ultradian rhythms. J. Crust. Biol., 25(4): 577-584. doi:10.1651/C-2606.1
Aschoff, J. – 1981. Free-running and entrained circadian rhythms. In: J. Aschoff (ed.), Handbook of behavioral neurobiology, Vol. 4, pp. 81-93. New York, Plenum Press.
Canal-Corretger, M.M., J. Vilaplana, T. Cambras, and A. Díez- Noguera. – 2001. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280(4): 1023-1030.
Canal-Corretger, M.M., T. Cambras, and A. Díez-Noguera. – 2003. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chronobiol. Int., 20(1): 21-35. doi:10.1081/CBI-120017690
Clemfuss, H. and P. Clopton. – 1993. Seeking tau: A comparison of six methods. J. Interdiscipl. Cycle Res., 24(1): 1-16.
Costa, C., A. Loy, M. Scardi, S. Cataudella, and D. Davis. – 2006. Extracting fish shape and size using dual underwater cameras. Acquacult. Eng. (in press). doi:10.1016/j.aquaeng.2006.02.003
Currie, D.R., M.A. McArthur, and B.F. Cohen. – 2000. Reproduction and distribution of the invasive European fan worm Sabella spallanzanii (Gmelin) (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria, Australia. Mar. Biol., 136: 645-656. doi:10.1007/s002270050724
Dowse, A., M.S. Dushay, J.C. Hall, and J. Ringo. – 1988. High-resolution analysis of locomotor activity rhythms in a disconnected, visual-system mutant of Drosophila melanogaster. Behav. Gen., 19(4): 529-541. doi:10.1007/BF01066252
Dowse, A., and J.D. Palmer. – 1990. Evidence for ultradian rhythmicity in an intertidal crab. Chronobiology: Its role in clinical medicine, general biology, and agriculture, (B): 691-697.
Dowse, A., and J. Ringo. – 1994. Summing locomotor activity data into “Bins”: how to avoid artifact in spectral analysis. Biol. Rhythms Res., 25(1): 2-14.
Fernández de Miguel, F., and H. Aréchiga. – 1994. Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J. Exp. Biol., 190: 9-21.
Garwood, P.R., and P.J.W. Olive. – 1982. The influence of photoperiod on oocyte growth and its role in the control of the reproductive cycle of the polychaete Harmothoe imbricata (L.). Int. J. Inv. Reprod., 5(3): 161-165.
Giangrande, A. – 1991. Behavior, irrigation and respiration in Eudidtyla vancouveri (Polychaeta: Sabellidae). J. Mar. Biol. Ass. U.K., 71: 27-35.
Giangrande, A., and A. Petraroli. – 1994. Observations on reproduction and growth of Sabella spallanzanii (Polychaeta, Sabellidae) in the Mediterranean Sea. Mem. Mus. Nat. Hist., 162: 51-56.
Giangrande, A., M. Licciano, P. Pagliara, and M.C. Gambi. – 2000. Gametogenesis and larval development in Sabella spallanzanii (Polychaeta: Sabellidae) from the Mediterranean Sea. Mar. Biol., 136: 847-861. doi:10.1007/s002279900251
Hammond, R.D., and E. Naylor. – 1977. Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar. Biol., 39: 253-260. doi:10.1007/BF00390999
Helfrich-Forster, C. – 2000. Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster — sex-specific differences suggest a different quality of activity. J. Biol. Rhythms, 15(2): 135-154.
Last, K.S., and P.J. W. Olive. – 2004. Interaction between photoperiod and an endogenous seasonal factor in influencing the diel locomotor activity of the benthic polychaete Nereis virens Sars. Biol. Bull., 206(2): 103-112. doi:10.2307/1543541
Last, K.S., P.J.W. Olive, and A.J. Edwards. – 1999. An actographic study of diel activity in the semelparous polychaete Nereis (Neanthes) virens Sars in relation to the annual cycle of growth and reproduction. Invertebr. Reprod. Dev., 35(2): 141-145.
Last, K.S., P.J.W. Olive, and A.J. Edwards. – 2000. Photoperiodic control of growth and regeneration in immature juvenile Nereis (Neanthes) virens. Bull. Mar. Sci., 67(1): 667.
Levine, J.D., P. Funes, H.B. Dowse, and J.C. Hall. – 2002. Signal analysis of behavioural and molecular cycles. BMC Neuroscience, 3(1): 1. doi:10.1186/1471-2202-3-1
Naylor, E. – 1985. Tidally rhythmic behaviour of marine animals. Symp. Soc. Exp. Biol., 39: 63-93.
Naylor, E. – 2005. Chronobiology: implications for marine resources exploitation and management. Sci. Mar., 69(1): 157 167.
Olive, P.J.W. – 1984. Environmental control of reproduction in Polychaeta. Polychaete reproduction in comparative reproductive biology. Forstcher. Zool., 29: 17-38.
Palmer, J.D. – 2000. The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays, 22: 32-37. doi:10.1002/(SICI)1521-1878(200001)22:1<32::AID-BIES7>3.0.CO;2-U
Peterson, E.L. – 1980. A limit cycle interpretation of a mosquito circadian oscillator. J. Theor. Biol., 84(2): 281-310. doi:10.1016/S0022-5193(80)80008-7
Pittendrigh, C.S. – 1981a. Circadian systems: Entrainment. In: J. Aschoff (ed.), Handbook of behavioural neurobiology, Vol. 4, pp. 95-124. New York, Plenum Press.
Pittendrigh, C.S. – 1981b. Circadian systems: General Perspective. In: J. Aschoff (ed.), Handbook of behavioural neurobiology, Vol. 4, pp. 57-80. New York, Plenum Press.
Pittendrigh, C.S., and S. Daan. – 1976. A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. J. Comp. Physiol., 106: 333-355. doi:10.1007/BF01417860
Riisgård, H.U., and N.M. Ivarsson. – 1990. The crown filament pump of the suspension feeding polychaete Sabella penicillus: filtration, effects of temperature and energy cost. Mar. Ecol. Prog. Ser., 62: 249-257. doi:10.3354/meps062249
Roenneberg, T., S. Daan, and M. Merrow. – 2003. The art of entrainment. J. Biol. Rhythms, 18(3): 183-194. doi:10.1177/0748730403018003001
Saunders, D.S. – 2002. Insects clocks. Elsevier.
Schiedges, K.L. – 1979. Field and laboratory investigations of factors controlling schizogamous reproduction in the polychaete, Autolytus. Int. J. Invertebr. Reprod., 1(6): 359-370.
Warman, G.C., and E. Naylor. – 1995. Evidence for multiple, cuespecific circatidal clock in the shore crab Carcinus maenas. J. Exp. Mar. Biol. Ecol., 189: 93-101. doi:10.1016/0022-0981(95)00014-I
Williams, B.G., E. Naylor, and T.D. Chatterton. – 1985. The activity patterns of New Zealand mud crabs under field and laboratory conditions. J. Exp. Mar. Biol. Ecol., 89: 269-282. doi:10.1016/0022-0981(85)90132-7
Wiedenmann, G. – 1977. Weak and strong phase shifting in the activity rhythm of Leucophaea maderae (Blaberidae) after light pulses of high intensity. Z. Naturforsch., 32: 146-467.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.