Concentración de isótopos estables de C y N en varios tejidos de la tortuga boba Caretta caretta del Mediterráneo occidental e implicaciones sobre la dieta

Autores/as

  • Mónica Revelles Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Luis Cardona Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Alex Aguilar Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Assumpció Borrell Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Gloria Fernández Fundación AsproNatura, Mallorca
  • Manuel San Félix Department of Zoology, Faculty of Biology, University of Valencia, Valencia

DOI:

https://doi.org/10.3989/scimar.2007.71n187

Palabras clave:

tejidos, isótopo estable, tortuga marina, nivel trófico, ecología trófica, carbono, nitrógeno

Resumen


La concentración isotópica de escudos del caparazón, piel, músculo y sangre de tortuga boba (Caretta caretta) fueron analizados para investigar el patrón de variación entre tejidos y para evaluar la posición de esta especie en las redes tróficas de la cuenca Argelina. La piel presentaba valores más altos de δ13C que el músculo o los escudos del caparazón y éstos presentaban valores más altos que la sangre. En cambio, el músculo presentaba valores más altos de δ15N que la piel, ésta valores más altos que la sangre y ésta valores más altos que los escudos del caparazón. Las tortugas muertas y las vivas del mismo hábitat no diferían en la concentración de isótopos estables. Sin embargo, alguno de los tejidos de las tortugas capturadas mediante palangre de superficie en el medio oceánico presentaban valores más altos de δ13C que los de las tortugas capturadas a mano o mediante trasmallo en la plataforma continental, aunque no diferían en el δ15N. La comparación de la concentración de isótopos estables de tortuga con la de otras especies de varias áreas de la cuenca Argelina reveló que consumían presas planctónicas y que el nivel trófico de las tortugas era superior que el de los cnidarios carnívoros pero inferior que el de peces y crustáceos zooplanctófagos

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bentivegna, F., Ciampa, M., Mazza, G., Paglialonga, A. and Travaglini, A. – 2003. Loggerhead turtle (Caretta caretta) in Tyrrhenian sea: trophic role of the Gulf of Naples. In: D. Margaritoulis and A. Demetropolous (eds.), Proceedings of the First Mediterranean Conference on Marine Turtles, pp. 71-75. Barcelona Convention - Bern Convention - Bonn Convention (CMS), Nicosia, Cyprus.

Biasatti, D.M. – 2004. Stable carbon isotopic profiles of sea turtle humeri: implications for ecology and physiology. Palaeogeogr. Palaeoclimatol. Palaeoecol., 206: 203-216. doi:10.1016/j.palaeo.2004.01.004

Bjorndal, K.A. – 1997. Foraging ecology and nutrition of Sea Turtles. In: P.L. Lutz and J.A. Musick (eds.), The biology of sea turtles, pp. 199-231. CRC Press, Washington, D.C.

Bolten, A.B. – 2000. Técnicas para la Medición de Tortugas Marinas. In: K.L. Eckert, K.A. Bjorndal, F.A. Abreu-Grobois and M. Donnelly (eds.), Técnicas de Investigación y Manejo para la Conservación de las Tortugas Marinas, IUCN /SSC Marine Turtle Specialist Group Publication No. 4 (Spanish translation), pp. 126-131. Washington, D.C.

Cardona, L., M. Revelles, C. Carreras, M. San Félix, M. Gazo and A. Aguilar. – 2005. Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar. Biol., 147: 583-591. doi:10.1007/s00227-005-1578-9

Dauby, P. – 1989. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica. Cont. Shelf Res., 9: 181-195. doi:10.1016/0278-4343(89)90091-5

Dauby, P., F. Mosora and M. Vertez. – 1990. A yearly study of 13C/14C isotopic ratio variation in the Calvi’s Bay Plankton. Rapp. Comm. int. Mer Médit., 32: 202.

DeNiro, M.J. and S. Epstein. – 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506. doi:10.1016/0016-7037(78)90199-0

DeNiro, M.J. and S. Epstein. – 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta, 45: 341-351. doi:10.1016/0016-7037(81)90244-1

France, R.L. – 1995a. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr., 40: 1310-1313.

France, R.L. – 1995b. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser., 124: 307-312. doi:10.3354/meps124307

Fry, B. and Sherr, E.B. – 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47.

Godley, B.J., D.R. Thompson, S. Waldron and R.W. Furness. – 1998. The trophic status of marine turtles as determined by stable isotope analysis. Mar. Ecol. Prog. Ser., 166: 277-284. doi:10.3354/meps166277

Herzka, S.Z. and G.J. Holt. – 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential application to settlement studies. Can. J. Fish. Aquat. Sci., 57: 137-147. doi:10.1139/cjfas-57-1-137

Hesslein, R.H., K.A. Hallard and P. Ramlal. – 1993. Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by 34S, 13C and δ15N. Can. J. Fish. Aquat. Sci., 50: 2071-2076.

Hobson, K.A. and R.G. Clark. – 1992a. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor, 94: 181-188. doi:10.2307/1368807

Hobson, K.A. and R.G. Clark. – 1992b. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor, 94: 189-197. doi:10.2307/1368808

Hobson, K.A., D.M. Schell, D. Renouf and E. Noseworthy. – 1996. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Can. J. Fish. Aquat. Sci., 53: 528-533. doi:10.1139/cjfas-53-3-528

Houghton, J.D.R., Woolmer, A. and Hays, G.C. – 2000. Sea turtle diving and foraging behaviour around the Greek island of Kefalonia. J. Mar. Biol. Ass. UK, 80: 761-762.

Jardine, T.D., D.L. MacLatchy, W.L. Fairchild, R.A. Cunjak and S.B. Brown. – 2004. Rapid carbon turnover during growth of Atlantic salmon (Salmo salar) smolts in sea water, and evidence of food consumption by growth-stunts. Hydrobiologia, 527: 63-75. doi:10.1023/B:HYDR.0000043182.56244.f6

Jennings, S., O. Reñones, B. Morales-Nin, N.V.C. Polunin, J. Moranta and J. Coll. – 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reef: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser., 146: 109-116. doi:10.3354/meps146109

Kelly, F.J. – 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool., 78: 1-27. doi:10.1139/cjz-78-1-1

Kurle, C. M. and G.A.J. Worthy. – 2002. Stable nitrogen and carbon isotope ratios in multiple tissues of the northern fur seals Callorhinus ursinus: implications for dietary and migratory reconstructions. Mar. Ecol. Prog. Ser., 236: 289-300. doi:10.3354/meps236289

Lepoint, G., F. Nyssen, S. Gobert, P. Dauby and J.M. Bouquegneau.– 2000. Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar. Biol., 136: 513-518. doi:10.1007/s002270050711

Logan, J., H. Haas, L. Deegan and E.Gaines. – 2006. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecol., 147: 391-395. doi:10.1007/s00442-005-0277-z PMid:16249895

MacAvoy, S.E., S.A. Macko and G.C. Garman. – 2001. Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can. J. Fish. Aquat. Sci., 58: 923-932. doi:10.1139/cjfas-58-5-923

Maruyama, A., Y. Yamada, B. Rusuwa and M. Yuma. – 2001. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can. J. Fish. Aquat. Sci., 58: 2125-2128. doi:10.1139/cjfas-58-11-2125

McCutchan J.H.Jr., W.M. Lewis, C. Kendall and C.C. McGrath. – 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378-390. doi:10.1034/j.1600-0706.2003.12098.x

Michener, R.H. and D.M. Schell. – 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: K. Lajtha and R.H. Michener (eds.), Stable isotopes in ecology and environmental science, pp. 138-157. Blackwell, Oxford.

Minagawa, M. and E. Wada. – 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48: 1135-1140. doi:10.1016/0016-7037(84)90204-7

Pearson, S.F., D.J. Levey, C.H. Greenberg and C. Martínez del Río. – 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecol., 135: 516-523.

Peterson, B.J. and B. Fry. – 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst., 18: 293-320. doi:10.1146/annurev.es.18.110187.001453

Pinnegar, J.K. and Polunin, N.V.C. – 2000. Contributions of stableisotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia, 122: 399-409. doi:10.1007/s004420050046

Plotkin, P.T., M.K. Wicksten and A.F. Amos. – 1993. Feeding ecology of the loggerhead sea turtle Caretta caretta in the Northwestern Gulf of Mexico. Mar. Biol., 115: 1-15. doi:10.1007/BF00349379

Polunin, N.V.C., B. Morales-Nin, W.E. Pawsey, J.E. Cartes, J.K. Pinnegar and J. Moranta. – 2001. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser., 220: 13-23. doi:10.3354/meps220013

Post, D.M. – 2002. Using stable isotope to estimate trophic position: models, methods and assumptions. Ecology, 83: 703-718.

Robbins, C., L. Felicetti and M. Sponheimer. – 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia, 144: 534-540. doi:10.1007/s00442-005-0021-8 PMid:15800751

Roth, J.D. and K.A. Hobson. – 2000. Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Can. J. Zool., 78: 848-852. doi:10.1139/cjz-78-5-848

Scheiner, S.M. – 2001. MANOVA. Multiple response variables and multispecies interactions. In: S.M. Scheiner and J. Gurevitch (eds.), Design and Analysis of Ecological Experiments, pp. 99- 115. Oxford University Press, New York, USA.

Seminoff, J.A., T.T. Jones, T. Eguchi, D.R. Jones and P.H. Dutton. – 2006. Stable isotope discrimination (δ13C and δ 15N) between soft tissues of the green sea turtle Chelonia mydas and its diet. Mar. Ecol. Prog. Ser., 308: 271-278. doi:10.3354/meps308271

Struck, U., A. Altenbach, M. Gaulke and F. Glaw. – 2002. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ 15N, δ 13C). Naturwissenschaften, 89: 470-473. doi:10.1007/s00114-002-0361-8 PMid:12384723

Thompson, D.R. and R.W. Furness. – 1995. Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in northern fulmars. Auk., 112: 493-498.

Tomás, J., F.J. Aznar, and J.A. Raga. – 2001. Feeding ecology of the loggerhead turtle Caretta caretta in the western Mediterranean. J. Zool., 255: 525-532.

Vanderklift, M.A. and S. Ponsard. – 2003. Sources of variation in consumer-diet δ 15N enrichment: a meta-analysis. Oecologia, 136: 169-182. doi:10.1007/s00442-003-1270-z PMid:12802678

Descargas

Publicado

2007-03-30

Cómo citar

1.
Revelles M, Cardona L, Aguilar A, Borrell A, Fernández G, San Félix M. Concentración de isótopos estables de C y N en varios tejidos de la tortuga boba Caretta caretta del Mediterráneo occidental e implicaciones sobre la dieta. Sci. mar. [Internet]. 30 de marzo de 2007 [citado 22 de julio de 2024];71(1):87-93. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/30

Número

Sección

Artículos

Artículos más leídos del mismo autor/a