Effects of six diets on the growth and survival rates of postlarvae of red abalone (Haliotis rufescens) and its hybrid (H. rufescens ♀ × H. fulgens ♂)

Authors

DOI:

https://doi.org/10.3989/scimar.05300.055

Keywords:

weaning abalone, Haliotis rufescens, Haliotis fulgens, hybrid vigour, Macrocystis pyrifera, benthic diatom

Abstract


One of the main bottlenecks in abalone aquaculture is maintaining individuals during the weaning stage, when the natural diet changes from diatoms (postlarvae) to macroalgae (juvenile). During this period, abalone pass through profound morphological and physiological changes, which suitable nutrient requirements must sustain. An inadequate diet can result in adverse effects such as late metamorphosis, starvation, slow growth and even death during this phase. Two strategies have been proposed to increase the growth and survival rates of weaning abalone: (i) extending feeding with benthic diatoms and (ii) abalone hybridization via interspecific crosses. To evaluate the efficiency of the two strategies, we assessed the growth and survival rates of postlarvae of pure red abalone (Haliotis rufescens) and a hybrid obtained by crossing red abalone females with green abalone (H. fulgens) males. Both crosses were supplied with six different diets consisting of either one macroalgae mono-diet (Macrocystis pyrifera or Ulva ohnoi) or a mixture with Navicula incerta. Overall, cross-specific diets achieved better growth rates, suggesting that each cross may need specific food items (nutrients) during weaning. Moreover, pure red abalone generally showed the highest growth rates, while the hybrid abalone showed the highest survival rates with most tested diets. Hence, hybrids appear to be better at withstanding stressful conditions, and their use in aquaculture could reduce losses and increase commercial production.

Downloads

Download data is not yet available.

References

Alter K., Andrewartha S.J., Morash A.J., et al. 2017. Hybrid abalone are more robust to multi-stressor environments than pure parental species. Aquaculture 478: 25-34. https://doi.org/10.1016/j.aquaculture.2017.04.035

Cai M., Wang Z., Ke C., et al. 2010. Allogyogenetic progeny are produced from a hybrid abalone cross of female Haliotis diversicolor and male Haliotis discus discus. J. Shellfish Res. 29: 725-729. https://doi.org/10.2983/035.029.0325

Carbajal-Miranda M.J., Sánchez-Saavedra M.D.P., Simental J.A. 2005. Effect of monospecific and mixed benthic diatom cultures on the growth of red abalone postlarvae Haliotis rufescens (Swainson 1822). J. Shellfish Res. 24: 401-405. https://doi.org/10.2983/0730-8000(2005)24[401:EOMAMB]2.0.CO;2

Cook P.A. 2014. The Worldwide Abalone Industry. Mod. Econ. 5: 1181-1186. https://doi.org/10.4236/me.2014.513110

Correa-Reyes J.G., Sánchez-Saavedra M. del P., Siqueiros-Beltrones D.A., Flores-Acevedo N. 2001. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J. Shellfish Res. 20: 603-610.

Correa-Reyes J.G., Sánchez-Saavedra M. del P., Viana M.T et al. 2009. Effect of eight benthic diatoms as feed on the growth of red abalone (Haliotis rufescens) postlarvae. J. Appl. Phycol. 21: 387-393. https://doi.org/10.1007/s10811-008-9381-x

Cox K.W. 1962. California Abalones, Family Haliotidae. Fish Bull. 118: 1-131.

Cunningham S.C., Smith A.M., Lamare M.D. 2016. The effects of elevated pCO2 on growth, shell production and metabolism of cultured juvenile abalone, Haliotis iris. Aquac. Res. 47: 2375-2392. https://doi.org/10.1111/are.12684

Daume S. 2006. The roles of bacteria and micro and macro algae in abalone aquaculture: A review. J. Shellfish Res. 25: 151-157. https://doi.org/10.2983/0730-8000(2006)25[151:TROBAM]2.0.CO;2

Daume S., Huchette S., Ryan S., Day R.W. 2004. Nursery culture of Haliotis rubra: the effect of cultured algae and larval density on settlement and juvenile production. Aquaculture 236: 221-239. https://doi.org/10.1016/j.aquaculture.2003.09.035

de Melo C.M.R., Durland E., Langdon C. 2016. Improvements in desirable traits of the Pacific oyster, Crassostrea gigas, as a result of five generations of selection on the West Coast, USA. Aquaculture 460: 105-115. https://doi.org/10.1016/j.aquaculture.2016.04.017

Durazo-Beltrán E., D'Abramo L.R., Toro-Vazquez J.F., et al. 2003. Effect of triacylglycerols in formulated diets on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture 224: 257-270. https://doi.org/10.1016/S0044-8486(03)00223-0

Durazo-Beltrán E., Viana M.T., D'Abramo L.R., Toro-Vazquez J.F. 2004. Effects of starvation and dietary lipid on the lipid and fatty acid composition of muscle tissue of juvenile green abalone (Haliotis fulgens). Aquaculture 238: 329-341. https://doi.org/10.1016/j.aquaculture.2004.03.025

Dyck M., Roberts R., Jeffs A. 2010. Use of algal diets to aid early weaning in the abalone Haliotis iris. J. Shellfish Res. 29: 613-620. https://doi.org/10.2983/035.029.0309

Edwards M.S. 2019. Comparing the impacts of four ENSO events on giant kelp (Macrocystis pyrifera) in the northeast Pacific Ocean. Algae 34: 141-151. https://doi.org/10.4490/algae.2019.34.5.4

Guillard R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L. and Chantey M.H. (eds), Cult. Mar. Invertebr. Anim. Plenum Publ. New York 29-60. https://doi.org/10.1007/978-1-4615-8714-9_3

Hamilton M., Kube P., Elliott N., et al. 2009. Development of a breeding strategy for hybrid abalone. Proc. Assoc. Adv. Anim. Breed. Genet. 18: 350-353.

Hernández J., Uriarte I., Viana M.T., et al. 2009. Growth performance of weaning red abalone (Haliotis rufescens) fed with Macrocystis pyrifera plantlets and Porphyra columbina compared with a formulated diet. Aquac. Res. 40: 1694-1702. https://doi.org/10.1111/j.1365-2109.2009.02267.x

Hopkins K.D. 1992. Reporting fish growth: A review of the basics. J. World Aquac. Soc. 23: 173-179. https://doi.org/10.1111/j.1749-7345.1992.tb00766.x

Johnston D., Moltschaniwskyj N., Wells J. 2005. Development of the radula and digestive system of juvenile blacklip abalone (Haliotis rubra): Potential factors responsible for variable weaning success on artificial diets. Aquaculture 250: 341-355. https://doi.org/10.1016/j.aquaculture.2005.03.012

Kawamura T., Saido T., Takami H., Yamashita Y. 1995. Dietary value of benthic diatoms for the growth of post-larval abalone Haliotis discus hannai. J. Exp. Mar. Bio. Ecol. 194: 189-199. https://doi.org/10.1016/0022-0981(95)00099-2

Lafarga-De la Cruz F., Gallardo-Escárate C. 2011. Intraspecies and interspecies hybrids in Haliotis: Natural and experimental evidence and its impact on abalone aquaculture. Rev. Aquac. 3: 74-99. https://doi.org/10.1111/j.1753-5131.2011.01045.x

Li J., Wang M., Fang J., et al. 2018. A comparison of offspring growth and survival among a wild and a selected strain of the Pacific abalone (Haliotis discus hannai) and their hybrids. 495: 721-725. https://doi.org/10.1016/j.aquaculture.2018.06.071

Liang S., Luo X., You W., Luo L., Ke C. 2014. The role of hybridization in improving the immune response and thermal tolerance of abalone. Fish Shellfish Immunol. 39: 69-77. https://doi.org/10.1016/j.fsi.2014.04.014 PMid:24794582

Martínez-Ponce D.R., Searcy-Bernal R. 1998. Grazing rates of red abalone (Haliotis rufescens) postlarvae feeding on the benthic diatom Navicula incerta. J. Shellfish Res. 17: 627-630.

Morales-Bojórquez E., Muciño-Díaz M.O., Vélez-Barajas J.A. 2008. Analysis of the decline of the abalone fishery (Haliotis fulgens and H. corrugata) along the westcentral coast of the Baja California peninsula, Mexico. J. Shellfish Res. 27: 865-870. https://doi.org/10.2983/0730-8000(2008)27[865:AOTDOT]2.0.CO;2

Morse D.E., Duncan H., Hooker N., Morse A. 1977. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science 196: 298-300. https://doi.org/10.1126/science.403609 PMid:403609

Muñoz P., Ambler R., Bulboa C. 2012. Settlement, Survival, and post-larval growth of red abalone, Haliotis rufescens, on polycarbonate plates treated with germlings of Ulva sp. J. World Aquac. Soc. 43: 890-895. https://doi.org/10.1111/j.1749-7345.2012.00615.x

Ortiz J., Uquiche E., Robert P., et al. 2009. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 111: 320-327. https://doi.org/10.1002/ejlt.200800140

Parker F., Davidson M., Freeman K., et al. 2007. Investigation of optimal temperature and light conditions for three benthic diatoms and their suitability to commercial scale nursery culture of abalone (Haliotis laevigata). J. Shellfish Res. 26: 751-761. https://doi.org/10.2983/0730-8000(2007)26[751:IOOTAL]2.0.CO;2

Revilla-Lovano S., Sandoval-Gil J.M., Zertuche-Gonzalez J.A., et al. 2021. Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Research, 56: 102316. https://doi.org/10.1016/j.algal.2021.102316

Searcy-Bernal R., Pérez-Sánchez E., Anguiano-Beltrán C., Flores-Aguilar R. 2007. Metamorphosis and postlarval growth of abalone Haliotis rufescens in a Mexican commercial hatchery. J. Shellfish Res. 26: 783-787. https://doi.org/10.2983/0730-8000(2007)26[783:MAPGOA]2.0.CO;2

Searcy-Bernal R., Ramade-Villanueva M.R., Altamira B. 2010. Current Status of abalone fisheries and culture in Mexico. J. Shellfish Res. 29: 573-576. https://doi.org/10.2983/035.029.0304

Simental-Trinidad J.A., Sánchez-Saavedra M.P., Correa-Reyes J.G. 2001. Biochemical composition of benthic marine diatoms using as culture medium a common agricultural fertilizer. J. Shellfish Res. 20: 611-617.

Simental J.A., Sanchez-Saavedra M.D., Flores-Acevedo N. 2004. Growth and survival of juvenile red abalone (Haliotis rufescens) fed with macroalgae enriched with a benthic diatom film. J. Shellfish Res. 23: 995-999.

Siqueiros-Beltrones D.A., Domenico V. 2000. Grazing selectivity of red abalone Haliotis rufescens postlarvae on benthic diatom films under culture conditions. J. World Aquac. Soc. 31: 239-246. https://doi.org/10.1111/j.1749-7345.2000.tb00359.x

Strain L.W.S., Borowitzka M.A., Daume S. 2006. Growth and survival of juvenile greenlip abalone (Haliotis laevigata) feeding on germlings of the macroalgae Ulva sp. J. Shellfish Res. 25: 239-247. https://doi.org/10.2983/0730-8000(2006)25[239:GASOJG]2.0.CO;2

Takami H., Kawamura T., Yamashita Y. et al. 2002. Effects of delayed metamorphosis on larval competence, and postlarval survival and growth of abalone Haliotis discus hannai. Aquaculture 213: 311-322. https://doi.org/10.1016/S0044-8486(02)00338-1

Valenzuela-Miranda D., Del Río-Portilla M.A., Gallardo-Escárate C. 2015. Characterization of the growth-related transcriptome in California red abalone (Haliotis rufescens) through RNA-Seq analysis. Mar. Genomics 24: 199-202. https://doi.org/10.1016/j.margen.2015.05.009 PMid:26006295

Viana M.T., López L.M., Salas A. 1993. Diet development for juvenile abalone Haliotis fulgens Evaluation of two artificial diets and macroalgae. Aquaculture 117: 149-156. https://doi.org/10.1016/0044-8486(93)90131-H

Viana M.T., D'Abramo L.R., Gonzalez M.A., et al. 2007. Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture 264: 323-329. https://doi.org/10.1016/j.aquaculture.2007.01.004

Zertuche-González J.A., Sandoval-Gil J.M., Rangel-Mendoza L.K., et al. 2021. Seasonal and interannual production of sea lettuce (Ulva sp.) in outdoor cultures based on commercial size ponds. J. World Aquac. Soc. 52: 1047-1058. https://doi.org/10.1111/jwas.12773

Published

2023-03-30

How to Cite

1.
Cicala F, Tripp-Valdez MA, Montes-Orozco V, Cervantes-Vazquez GS, Lafarga-De la Cruz F. Effects of six diets on the growth and survival rates of postlarvae of red abalone (Haliotis rufescens) and its hybrid (H. rufescens ♀ × H. fulgens ♂). Sci. mar. [Internet]. 2023Mar.30 [cited 2024Apr.19];87(1):e055. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1944

Issue

Section

Articles

Funding data

Consejo Nacional de Ciencia y Tecnología
Grant numbers SEP-CONACYT-CB-2014-238708