RNA/DNA and derived condition indices for anchovy and hake larvae as relevant information for comprehensive fisheries management

Authors

DOI:

https://doi.org/10.3989/scimar.05288.049

Keywords:

nutritional condition, RNA/DNA index, ichthyoplankton, Engraulis anchoita, Merluccius hubbsi, North Patagonian Frontal System

Abstract


The nutritional condition of anchovy and Argentine hake larvae in the Northern Patagonian Frontal System (NPFS) area was studied in the austral spring of 2018. We hypothesized that this area provides adequate features for larval growth and survival. The RNA/DNA index (RD) and its derived index of growth performance were employed. A critical RD value for starvation was calculated. The percentage of individuals under starvation and in optimal growth conditions was calculated. Because the period of study was the beginning of the hake spawning period, a limited number of larvae of this species were collected. The RD index showed a significant increase throughout larval ontogeny for anchovy larvae, being 1.84±1.39 (N=739) and 2.77±1.50 (N=220) in the pre-flexion and flexion stages respectively. These values were significantly higher at stations close to the NPFS and at the upper level of the water column. No differences were observed throughout the day. The area inside the NPFS showed a lower proportion of starved anchovy and a higher proportion of individuals in optimal growth, standing as a favourable nursing area. For hake larvae, the average RD was 1.64±0.55 (N=15). The great sensitivity of the RD index makes it a powerful tool for assessing the probability of larval survival and posterior recruitment into fisheries and allowing the identification of favourable rearing areas for these important species for fisheries.

Downloads

Download data is not yet available.

References

Acha E.M., Mianzan H.W., Guerrero R.A., et al. 2004. Marine fronts at the continental shelves of austral South America: Physical and ecological processes. J. Mar. Syst. 44: 83-105. https://doi.org/10.1016/j.jmarsys.2003.09.005

Alheit J., Ciechomski J.D., Djurfeldt L., et al. 1991. SARP studies on Southwest Atlantic anchovy, Engraulis anchoita, off Argentina, Uruguay and Brazil. ICES, France, 46: 1-32.

Álvarez-Colombo G., Dato C., Macchi G., et al. 2011. Distribution and behavior of Argentine hake larvae: Evidence of a biophysical mechanism for self-recruitment in northern Patagonian shelf waters. Cienc. Mar. 37, 633-657. https://doi.org/10.7773/cm.v37i4B.1777

Álvarez-Colombo G., Mianzan H., Madirolas A. 2003. Acoustic characterization of gelatinous-plankton aggregations: four case studies from the Argentine Continental shelf. ICES J. Mar. Sci. 60: 650-657. https://doi.org/10.1016/S1054-3139(03)00051-1

Alves N.M., Braverman M.S., Temperoni B. et al. 2022. Primeros estudios de condición nutricional en juveniles de Micropogonias furnieri en Bahía Samborombón durante dos temporadas del año (cálida y fría). Inf. Inv. INIDEP N°67, Mar del Plata, 18 pp.

Angelescu V. 1982. "Ecología trófica de la anchoíta del Mar Argentino (Engraulidae, Engraulis anchoita). Parte II. Alimentación, comportamiento y relaciones tróficas en el ecosistema." Contr. INIDEP. 409: 1-83.

Bakun A. 1997. Patterns in the ocean: ocean processes and marine population dynamics. Oceanogr. Lit. Rev. 5: 530.

Bakun A., Parrish R.H. 1991. Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the Southwestern Atlantic. ICES J. Mar. Sci. 48: 343-361. https://doi.org/10.1093/icesjms/48.3.343

Betti P., Machinandiarena L., Ehrlich M.D. 2009. Larval development of argentine hake Merluccius hubbsi. J. Fish Biol. 74: 235-249. https://doi.org/10.1111/j.1095-8649.2008.02136.x PMid:20735536

Buckley B.A., Caldarone E.M., Ong T.L. 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401: 265-277. https://doi.org/10.1023/A:1003798613241

Buckley B.A., Caldarone E.M., Clemmesen C.M. 2008. Multi-species larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: results from a meta-analysis. Mar. Ecol. Prog. Ser. 371: 221-232. https://doi.org/10.3354/meps07648

Buckley L. 1984. RNA/DNA ratio: an index of larval fish growth in the sea. Mar. Biol. 80: 291-298. https://doi.org/10.1007/BF00392824

Bulow F.J. 1970. RNA-DNA ratios as indicators of recent growth rates of a fish. J. Fish. Res. Board Can. 27: 2343-2349. https://doi.org/10.1139/f70-262

Caldarone E.M., Wagner M., St. Onge-Burns J., Buckley L.J. 2001. Protocol and guide for estimating nucleic acids in larval fish using a fluorescence microplate reader. Reference Document 01-11, Northeast Fisheries Science Center.

Caldarone E.M., Clemmesen C.M., Berdalet E., et al. 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr-Meth. 4: 153-163. https://doi.org/10.4319/lom.2006.4.153

Carreto J.I., Benavídez H.R. 1990. Synopsis on the reproductive biology and early life of Engraulis anchoita, and related environmental conditions in Argentine waters. Phytoplankton. IOC. Worksh. Rep. 65. Annex V: 2-5.

Chícharo L., Chícharo M.A. 1995. The RNA/DNA ratio as a useful indicator of the nutritional condition in juveniles of Ruditapes decussatus. Sci. Mar. 59 (suppl. 1): 95-101.

Chícharo M.A., Chícharo L. 2008. RNA: DNA ratio and other nucleic acid derived indices in marine ecology. Int. J. Mol. Sci. 9: 1453-1471. https://doi.org/10.3390/ijms9081453 PMid:19325815 PMCid:PMC2635731

Clemmesen C. 1994. The effect of food availability, age or size on the RNA/DNA ratio of individually measured herring larvae: laboratory calibration. Mar. Biol. 118: 377-382. https://doi.org/10.1007/BF00350294

Cohen S., Díaz A.O., Diaz M.V. 2021. Morphological and biochemical approaches to assess the nutritional condition of the Argentine hake Merluccius hubbsi larvae from two different nursery areas. J. Fish Biol. 98: 132-141. https://doi.org/10.1111/jfb.14563 PMid:32984950

Coll M., Palomera I. 2007. Hacia el estudio y la gestión pesquera basada en los ecosistemas. Ecología política 21: 87-89.

Cousseau M.B., Perrota R.G. 1998. Peces marinos de Argentina. Biología, distribución y pesca. INIDEP, Mar del Plata, 163 pp.

Dänhardt A., Peck M.A., Clemmesen C.M., Temming, A. 2007. Depth-dependent nutritional condition of sprat Sprattus sprattus larvae in the central Bornholm Basin, Baltic Sea. Mar. Ecol. Prog. Ser. 341: 217-228. https://doi.org/10.3354/meps341217

Derisio C., Alemany D., Acha E.M., Mianzan H.W. 2014. Influence of a tidal front on zooplankton abundance, assemblages and life histories in Península Valdés, Argentina. J. Mar. Syst. 139: 475-482. https://doi.org/10.1016/j.jmarsys.2014.08.019

Diaz M.V., Pájaro M. 2012. Protocolo para la determinación de las concentraciones de ácidos nucleicos en larvas de peces. Inf. Inv. INIDEP N°20, Mar del Plata, 9 pp.

Diaz M.V., Olivar M.P., Macchi G.J. 2014. Larval condition of Merluccius hubbsi (Marini, 1933) in the northern Patagonian spawning ground. Fish. Res. 160: 60-68. https://doi.org/10.1016/j.fishres.2013.11.009

Diaz M.V., Do Souto M., Peralta M., et al. 2016. Comer o ser comido: factores que determinan la condición nutricional de larvas de Engraulis anchoita de la población patagónica de la especie. Ecología Austral 26:120-133. https://doi.org/10.25260/EA.16.26.2.0.71

Diaz M.V., Do Soot M., Betti P., et al. 2020. Evaluating the role of endogenous and exogenous features on larval hake nutritional condition. Fish Oceanogr. 29: 584-596. https://doi.org/10.1111/fog.12497

Do Souto M., Spinelli M., Brown D.R., et al. 2018. Benefits of frontal waters for the growth of Engraulis anchoita larvae: The influence of food availability. Fish. Res. 204: 181-188. https://doi.org/10.1016/j.fishres.2018.02.019

Do Souto M., Brown D.R., Leonarduzzi E., et al. 2019. Nutritional condition and otolith growth of Engraulis anchoita larvae: the comparison of two life traits indexes. J. Mar. Syst. 193: 94-102. https://doi.org/10.1016/j.jmarsys.2019.01.008

Ehrlich M.D. 1998. Los primeros estadios de vida de la merluza Merluccius hubbsi, Marini 1933, en el Mar Argentino como aporte al conocimiento de su reclutamiento y estructura poblacional. Doctoral thesis, Univ. Buenos Aires, 318 pp.

Folkvord A., Ystanes L., Moksness E. 1996. RNA:DNA ratios and growth of herring (Clupea harengus) larvae reared in mesocosms. Mar. Biol. 126: 591-602. https://doi.org/10.1007/BF00351326

Grønkjær P., Clemmesen C.M., St. John M. 1997. Nutritional condition and vertical distribution of Baltic cod larvae. J. Fish Biol. 51: 352-369. https://doi.org/10.1111/j.1095-8649.1997.tb06108.x

Guerrero R.A., Acha E.M., Framiñan M.B., Lasta C.A. 1997. Physical oceanography of the Río de la Plata Estuary, Argentina. Cont. Shelf Res. 17: 727-742. https://doi.org/10.1016/S0278-4343(96)00061-1

Hansen J.E. 2004. Anchoíta (Engraulis anchoita). In: Sánchez R.P., Bezzi S.I., Boschi E.E. (eds), El mar argentino y sus recursos pesqueros. Publicaciones especiales INIDEP: 101-115.

Hansen J.E., Martos P., Madirolas A. 2001. Relationship between spatial distribution of the Patagonian stock of Argentine anchovy, Engraulis anchoita, and sea temperatures during late spring to early summer. Fish. Oceanogr. 10: 193-206. https://doi.org/10.1046/j.1365-2419.2001.00166.x

Houde E.D. 2008. Emerging from Hjort's Shadow. J. Northwest Atl. Fish. Sci. 41: 53-70. https://doi.org/10.2960/J.v41.m634

Houde E.D., Zastrow C.E. 1993. Ecosystem- and taxon-especific dynamic and energetics properties of larval fish assemblages. Bull. Mar. Sci. 53: 290-335.

Macchi G.J., Pájaro M., Ehrlich M. 2004. Seasonal egg production pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fish. Res. 67: 25-38. https://doi.org/10.1016/j.fishres.2003.08.006

Macchi G.J., Pájaro M., Madirolas A. 2005. Can a change in the spawning pattern of Argentine hake (Merluccius hubbsi) affect its recruitment? Fish. Bull. 103: 445-452.

Macchi G.J., Pájaro M., Dato C. 2007. Spatial variations of the Argentine hake (Merluccius hubbsi) spawning shoals in the Patagonian area during a reproductive season. Rev. Biol. Mar. Oceanogr. (Chile). 42: 345-356. https://doi.org/10.4067/S0718-19572007000300013

Macchi G.J., Diaz M.V., Leonarduzzi E., et al. 2021. Temperature, maternal effects and density-dependent processes during early life stages of Argentine hake as relevant recruitment drivers. Fish. Res. 238: 105898. https://doi.org/10.1016/j.fishres.2021.105898

Martos P., Sánchez R. 1997. Caracterización oceanográfica de regiones frontales en la plataforma patagónica en relación con áreas de desove y cría de la anchoíta (Engraulis anchoita). 10° Coloquio Argentino de Oceanografía, 4-5 Septiembre, IADO-CONICET, Bahía Blanca.

McGurk M.D., Warburton H.D., Galbraith M., Kusser W.C. 1992. RNA-DNA ratio of herring and sand lance larvae from Port Moller, Alaska: Comparison with prey concentration and temperature. Fish. Oceanogr. 1: 193-207. https://doi.org/10.1111/j.1365-2419.1992.tb00038.x

Mianzan H.W., Guerrero R.A. 2000. Environmental patterns and biomass distribution of gelatinous macrozooplankton. Three study cases in the Southwestern Atlantic Ocean. Sci. Mar. 64: 215-224. https://doi.org/10.3989/scimar.2000.64s1215

Ministry of Agroindustry. 2022. https://www.magyp.gob.ar/sitio/areas/pesca_maritima/desembarques/

Olivar M.P., Diaz M.V., Chícharo M.A. 2009. Tissue effect on RNA: DNA ratios of marine fish larvae. Sci. Mar. 73S1: 171-182. https://doi.org/10.3989/scimar.2009.73s1171

Orlando P., Buratti C., Garciarena A.D. 2019. Diagnóstico de la población de anchoita bonaerense (Engraulis anchoita) y estimación de captura biológicamente aceptable durante el año 2019. Inf. Téc. INIDEP Nº 24, Mar del Plata, 29 pp.

Pájaro M., Macchi G.J., Martos P. 2005. Reproductive pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fish. Res. 72: 97-108. https://doi.org/10.1016/j.fishres.2004.09.006

Palomera I. 1991. Vertical distribution of eggs and larvae of Engraulis encrasicolus in stratified waters of the western Mediterranean. Mar. Biol. 111: 37-44. https://doi.org/10.1007/BF01986343

Pauly D. 2009. Beyond duplicity and ignorance in global fisheries. Sci. Mar. 73: 215-224. https://doi.org/10.3989/scimar.2009.73n2215

Rooker J.K., Holt G.J. 1996. Application of RNA:DNA ratios to evaluate the condition and growth of larval and juvenile red drum (Sciaenops ocellatus). Mar. Freshw. Res. 47: 283-290. https://doi.org/10.1071/MF9960283

Sabatini M.E., Martos P. 2002. Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Sci. Mar. 66: 215-232. https://doi.org/10.3989/scimar.2002.66n3215

Sánchez R.P., Ciechomski J.D. 1995. Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Sci. Mar. 59: 455-478

Schiariti A. 2008. Historia de vida y dinámica de poblaciones de Lychnorhyza lucerna (Scyphozoa) ¿un recurso pesquero alternativo? Doctoral thesis, Univ. Buenos Aires, 220 pp.

Schiariti A., Betti P., Dato C., et al. 2015. Medusas y ctenóforos de la región norpatagónica I: diversidad y patrones de distribución. Inf. Inv. INIDEP N°21, Mar del Plata, 16 pp.

Simpson J.H., Bowers D. 1981. Models of stratification and frontal movement in shelf seas. Deep-Sea Res. 28: 727-738. https://doi.org/10.1016/0198-0149(81)90132-1

Smith K.A, Suthers I.M. 1999. Displacement of diverse ichthyoplankton assemblages by a coastal upwelling event on the Sydney shelf. Mar. Ecol. Prog. Ser. 176: 49-62. https://doi.org/10.3354/meps176049

Temperoni B., Viñas M.D. 2015. Disponibilidad de presas zooplanctónicas para larvas de Merluccius hubbsi en el área de desove. Resultados de la campaña EH-01/14. Inf. Inv. INIDEP N°50, Mar del Plata, 15 pp.

Temperoni B., Viñas M.D., Martos P., Marrari M. 2014. Spatial patterns of copepod biodiversity in relation to a tidal front system in the main spawning and nursery area of the Argentine hake Merluccius hubbsi. J. Mar. Syst. 139: 433-445. https://doi.org/10.1016/j.jmarsys.2014.08.015

Viladrich N., Rossi S., Lopez-Sanz A., Orejas C. 2016. Nutritional condition of two coastal rocky fishes and the potential role of a marine protected area. Mar. Ecol. 37: 46-63. https://doi.org/10.1111/maec.12247

Viñas M.D., Ramírez F.C. 1996. Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch. Fish. Mar. Res. 43: 231-256.

Published

2022-12-14

How to Cite

1.
Diaz MV, Do Souto M, Cohen S, Macchi GJ. RNA/DNA and derived condition indices for anchovy and hake larvae as relevant information for comprehensive fisheries management. Sci. mar. [Internet]. 2022Dec.14 [cited 2024Apr.20];86(4):e049. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1938

Issue

Section

Articles

Funding data

Consejo Nacional de Investigaciones Científicas y Técnicas
Grant numbers CONICET-112 20200101807CO;PIP11220200102831CO

Fondo para la Investigación Científica y Tecnológica
Grant numbers FONCYT-PICT 2018-03872;PICT 2020-03022

Most read articles by the same author(s)