Comportamiento del cardumen de preasentados de un pez rocoso en aguas someras. ¿Está relacionado con las condiciones ambientales?
DOI:
https://doi.org/10.3989/scimar.05043.19APalabras clave:
agrupación, peces de arrecife, asentamiento, temperatura agua de mar, vientos locales, turbulenciaResumen
Este estudio evalúa el comportamiento natatorio de larvas pre-asentadas del trombollito de tres aletas Helcogrammoides chilensis (Tripterygiidae) en relación con las condiciones ambientales locales. Para describir su comportamiento natatorio (i.e. solitario, agregación y cardumen) los grupos de larvas fueron grabadas en video en el intermareal rocoso en Chile central, durante el verano austral de 2014 y 2016. Luego, estas conductas fueron relacionadas con la temperatura del agua de mar in situ, estrés y velocidad del viento y turbulencia. Los comportamientos solitarios y agregados fueron afectados solamente por la turbulencia inducida por el viento en el 2014, y por la temperatura del agua de mar y estrés del viento en 2016. El comportamiento de cardumen no fue influido por ninguna variable ambiental. El comportamiento natatorio in situ de larvas de peces ha sido escasamente estudiado, por lo tanto, este trabajo propone una metodología no invasiva in situ para estudiar el comportamiento de las larvas de peces.
Descargas
Citas
Aiken C.M., Navarrete S.A., Castillo M.I., et al. 2007. Along-shore larval dispersal kernels in a numerical ocean model of the central Chilean coast. Mar. Ecol. Prog. Ser. 339: 13-24. https://doi.org/10.3354/meps339013
Aiken C.M., Castillo M.I., Navarrete S.A. 2008. A simulation of the Chilean coastal current and associated topographic upwelling near Valparaíso, Chile. Cont. Shelf Res. 28: 2371-2381. https://doi.org/10.1016/j.csr.2008.05.006
Aravena G., Broitman B., Stenseth N.C. 2014. Twelve years of change in coastal upwelling along the central-northern coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9: e90276. https://doi.org/10.1371/journal.pone.0090276 PMid:24587310 PMCid:PMC3938675
Brandl S.J., Tornabene L., Goatley C.H.R., et al. 2019. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364: 1189-1192. https://doi.org/10.1126/science.aav3384 PMid:31123105
Cancino C., Farías K., Lampas S., et al. 2010. Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev. Biol. Mar. Oceanogr. 45: 671-682. https://doi.org/10.4067/S0718-19572010000400011
Caie P., Shima J.S. 2019. Patterns of selective predation change with ontogeny but not density in a marine fish. Oecologia 189: 123-132. https://doi.org/10.1007/s00442-018-4303-3 PMid:30421006
Díaz-Astudillo M., Castillo M.I., Cáceres M.A., et al. 2017. Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Mar. Biol. Res. 13: 1015-1026. https://doi.org/10.1080/17451000.2017.1335872
Díaz-Astudillo M., Landaeta M.F., Bernal-Durán V., et al. 2019. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166: 42. https://doi.org/10.1007/s00227-019-3489-1
Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.
Hasler C.T., Suski C.D., Hanson K.C., et al. 2009. Effects of water temperature on laboratory swimming performance and natural activity levels of adult largemouth bass. Can. J. Zool. 87: 589-596. https://doi.org/10.1139/Z09-044
Hernández-Miranda E., Palma A.T., Ojeda F.P. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: Temporal and spatial patterns. Estuar. Coast. Shelf. Sci. 56: 1075-1092. https://doi.org/10.1016/S0272-7714(02)00308-6
Hindell J.S., Jenkins G.P., Moran S.M., et al. 2003. Swimming ability and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment. Oecologia 135: 158-166. https://doi.org/10.1007/s00442-003-1180-0 PMid:12647115
Hoare D.J., Krause J., Peuhkuri N., et al. 2000. Body size and shoaling in fish. J. Fish Biol. 57: 1351-1366. https://doi.org/10.1111/j.1095-8649.2000.tb02217.x
Hoare D.J., Couzin I.D., Godin J.G.J., et al. 2004. Context-dependent group size choice in fish. Anim. Behav. 67: 155-164. https://doi.org/10.1016/j.anbehav.2003.04.004
Landaeta M.F., Schrebler K., Bustos C.A., et al. 2009. Temporal fluctuations of nearshore icthyoplankton off Valparaíso, central Chile, during the ENSO cycle 1997-2000. Rev. Biol. Mar. Oceanogr. 44: 571-582. https://doi.org/10.4067/S0718-19572009000300005
Landaeta M.F., Zavala-Muñoz F., Palacios-Fuentes P., et al. 2015. Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50: 563-574. https://doi.org/10.4067/S0718-19572015000400013
Leis J.M. 2006. Are Larvae of Demersal Fishes Plankton or Nekton? Adv. Mar. Biol. 51: 57-141. https://doi.org/10.1016/S0065-2881(06)51002-8
Leis J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57: 325-342. https://doi.org/10.1007/s10228-010-0177-z
Leis J.M., Paris C.B., Irisson J-O., et al. 2014. Orientation of fish larva in situ is consistent among locations, years and methods, but varies with time of day. Mar. Ecol. Prog. Ser. 505: 193-208. https://doi.org/10.3354/meps10792
López U., Gautrais J., Couzin I.D., et al. 2012. From behavioural analyses to models of collective motion in fish schools. Interface Focus 2: 693-707. https://doi.org/10.1098/rsfs.2012.0033 PMid:24312723 PMCid:PMC3499128
MacKenzie B.R., Leggett W.C. 1993. Wind-based models for estimating the dissipation rates of turbulent energy in aquatics environments: empirical comparisons. Mar. Ecol. Progr. Ser. 94: 207-216. https://doi.org/10.3354/meps094207
Magurran A.E. 1990. The adaptive significance of schooling as an anti-predator defence in fish. Ann. Zool. Fenn. 27: 51-66.
Mansur L., Plaza G., Landaeta M.F., et al. 2014. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65: 901-909. https://doi.org/10.1071/MF13064
Martínez C., Contreras-López M., Winckler P., et al. 2018. Coastal erosion in central Chile: A new hazard? Ocean Coast. Man. 156: 141-155. https://doi.org/10.1016/j.ocecoaman.2017.07.011
Maury O. 2017. Can schooling regulate marine populations and ecosystems? Prog. Oceanogr. 156: 91-103. https://doi.org/10.1016/j.pocean.2017.06.003
McDermontt C.J., Shima J.S. 2006. Ontogenetic shift in microhabitat preference of a temperate reef fish Forsterygion lapillum: implications for population limitation. Mar. Ecol. Prog. Ser. 320: 259-266. https://doi.org/10.3354/meps320259
Miller N., Gerlai R. 2012. From Schooling to Shoaling: Patterns of collective motion in zebrafish (Danio rerio). PLoS ONE 7: e48865. https://doi.org/10.1371/journal.pone.0048865 PMid:23166599 PMCid:PMC3498229
Muñoz A.A., Ojeda F.P. 1998. Guild structure of carnivorous intertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114: 563-573. https://doi.org/10.1007/s004420050481 PMid:28307906
Narváez D.A., Poulin E., Leiva G., et al. 2004. Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont. Shelf Res. 24: 279-292. https://doi.org/10.1016/j.csr.2003.09.008
Palacios-Fuentes P., Landaeta M.F., Jahnsen-Guzmán N., et al. 2014. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48: 259-266. https://doi.org/10.1007/s10452-014-9481-4
Parrish J.K., Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99-101. https://doi.org/10.1126/science.284.5411.99 PMid:10102827
Parrish J.K., Hamner W.M., Prewitt C.T. 1997. Introduction-from individuals to aggregations: unifying properties, global framework, and the holy grails of congregation. In: Parrish J.K., Hamner W.M. (eds), Animal groups in three dimensions. Cambridge Univ. Press, Cambridge, pp. 1-14. https://doi.org/10.1017/CBO9780511601156.001
Pechenik J.A. 2006. Larval experience and latent effects - metamorphosis is not a new beginning. Integr. Comp. Biol. 46: 323-333. https://doi.org/10.1093/icb/icj028 PMid:21672745
Pérez R. 1979. Postembryonic development of Tripterygion chilensis Cancino, 1955, in Valparaíso bay (Tripterygiidae: Perciformes). Rev. Biol. Mar. 16: 19-329.
Pérez-Matus A., Sánchez F., González-But J.C., et al. 2016. Understory algae associations and predation risk influence broad-scale kelp habitat use in a temperate reef fish. Mar. Ecol. Prog. Ser. 559: 147-158. https://doi.org/10.3354/meps11892
Ruck J.G. 1973. Development of Tripterygion capito and F. robustum (Pisces: Tripterygiidae). Zool. Publ. Vic. Univ. Wellingt. 63: 1-10
Ruck J.G. 1980. Early development of Forsterygion varium, Gilloblennius decemdigitatus, and G. tripennis (Pisces: Tripterygiidae). N. Z. J. Mar. Freshw. Res. 14: 313-326. https://doi.org/10.1080/00288330.1980.9515874
Sadoul B., Mengues P.E., Friggens N.C., et al. 2014. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 430: 179-187. https://doi.org/10.1016/j.aquaculture.2014.04.008
Santana-Garcon J., Leis J.M., Newman S.J., et al. 2014. Presettlement schooling behaviour of a priacanthid, the Purplespotted Bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environ. Biol. Fish. 97: 277-283. https://doi.org/10.1007/s10641-013-0150-6
Shaffer G., Pizarro O., Djurfeldt L., et al. 1997. Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991-92 El Niño. J. Phys. Oceanogr. 27: 217-235. https://doi.org/10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2
Shaffer G., Hormazabal S., Pizarro O., et al. 1999. Seasonal and interannual variability of currents and temperature off central Chile. J. Geophys. Res. 104: 29951-29961. https://doi.org/10.1029/1999JC900253
Shima J.S., Findlay A.M. 2002. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235: 303-309. https://doi.org/10.3354/meps235303
Shima J.S, Swearer S.E. 2009. Larval quality is shaped by matrix effects: Implications for connectivity in a marine metapopulation. Ecology 90: 1255-1267. https://doi.org/10.1890/08-0029.1 PMid:19537546
Stepien C.A. 1990. Population structure, diets and biogeographic relationships of a rocky intertidal fish assemblage in central Chile: high levels of herbivory in a temperate system. Bull. Mar. Sci. 47: 598-612.
Wellenreuther M., Clements K.D. 2008. Determinants of habitat association in a sympatric clade of marine fishes. Mar. Biol. 154: 393-402. https://doi.org/10.1007/s00227-008-0940-0
Williams J.T., Springer V.G. 2001. Review of the South American Antartic triplefin fish genus Helcogrammoides (Perciformes: Tripterygiidae). Rev. Biol. Trop. 49: 117-123.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.