Comportamiento del cardumen de preasentados de un pez rocoso en aguas someras. ¿Está relacionado con las condiciones ambientales?

Autores/as

DOI:

https://doi.org/10.3989/scimar.05043.19A

Palabras clave:

agrupación, peces de arrecife, asentamiento, temperatura agua de mar, vientos locales, turbulencia

Resumen


Este estudio evalúa el comportamiento natatorio de larvas pre-asentadas del trombollito de tres aletas Helcogram­moides chilensis (Tripterygiidae) en relación con las condiciones ambientales locales. Para describir su comportamiento natatorio (i.e. solitario, agregación y cardumen) los grupos de larvas fueron grabadas en video en el intermareal rocoso en Chile central, durante el verano austral de 2014 y 2016. Luego, estas conductas fueron relacionadas con la temperatura del agua de mar in situ, estrés y velocidad del viento y turbulencia. Los comportamientos solitarios y agregados fueron afectados solamente por la turbulencia inducida por el viento en el 2014, y por la temperatura del agua de mar y estrés del viento en 2016. El comportamiento de cardumen no fue influido por ninguna variable ambiental. El comportamiento natatorio in situ de larvas de peces ha sido escasamente estudiado, por lo tanto, este trabajo propone una metodología no invasiva in situ para estudiar el comportamiento de las larvas de peces.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aiken C.M., Navarrete S.A., Castillo M.I., et al. 2007. Along-shore larval dispersal kernels in a numerical ocean model of the cen­tral Chilean coast. Mar. Ecol. Prog. Ser. 339: 13-24. https://doi.org/10.3354/meps339013

Aiken C.M., Castillo M.I., Navarrete S.A. 2008. A simulation of the Chilean coastal current and associated topographic upwelling near Valparaíso, Chile. Cont. Shelf Res. 28: 2371-2381. https://doi.org/10.1016/j.csr.2008.05.006

Aravena G., Broitman B., Stenseth N.C. 2014. Twelve years of change in coastal upwelling along the central-northern coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9: e90276. https://doi.org/10.1371/journal.pone.0090276 PMid:24587310 PMCid:PMC3938675

Brandl S.J., Tornabene L., Goatley C.H.R., et al. 2019. Demograph­ic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364: 1189-1192. https://doi.org/10.1126/science.aav3384 PMid:31123105

Cancino C., Farías K., Lampas S., et al. 2010. Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Rev. Biol. Mar. Oceanogr. 45: 671-682. https://doi.org/10.4067/S0718-19572010000400011

Caie P., Shima J.S. 2019. Patterns of selective predation change with ontogeny but not density in a marine fish. Oecologia 189: 123-132. https://doi.org/10.1007/s00442-018-4303-3 PMid:30421006

Díaz-Astudillo M., Castillo M.I., Cáceres M.A., et al. 2017. Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Mar. Biol. Res. 13: 1015-1026. https://doi.org/10.1080/17451000.2017.1335872

Díaz-Astudillo M., Landaeta M.F., Bernal-Durán V., et al. 2019. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166: 42. https://doi.org/10.1007/s00227-019-3489-1

Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontologi­cal Statistics software package for education and data analysis. Palaeontologia Electronica 4: 4.

Hasler C.T., Suski C.D., Hanson K.C., et al. 2009. Effects of water temperature on laboratory swimming performance and natu­ral activity levels of adult largemouth bass. Can. J. Zool. 87: 589-596. https://doi.org/10.1139/Z09-044

Hernández-Miranda E., Palma A.T., Ojeda F.P. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: Temporal and spatial patterns. Estuar. Coast. Shelf. Sci. 56: 1075-1092. https://doi.org/10.1016/S0272-7714(02)00308-6

Hindell J.S., Jenkins G.P., Moran S.M., et al. 2003. Swimming abil­ity and behaviour of post-larvae of a temperate marine fish re-entrained in the pelagic environment. Oecologia 135: 158-166. https://doi.org/10.1007/s00442-003-1180-0 PMid:12647115

Hoare D.J., Krause J., Peuhkuri N., et al. 2000. Body size and shoal­ing in fish. J. Fish Biol. 57: 1351-1366. https://doi.org/10.1111/j.1095-8649.2000.tb02217.x

Hoare D.J., Couzin I.D., Godin J.G.J., et al. 2004. Context-depend­ent group size choice in fish. Anim. Behav. 67: 155-164. https://doi.org/10.1016/j.anbehav.2003.04.004

Landaeta M.F., Schrebler K., Bustos C.A., et al. 2009. Temporal fluctuations of nearshore icthyoplankton off Valparaíso, cen­tral Chile, during the ENSO cycle 1997-2000. Rev. Biol. Mar. Oceanogr. 44: 571-582. https://doi.org/10.4067/S0718-19572009000300005

Landaeta M.F., Zavala-Muñoz F., Palacios-Fuentes P., et al. 2015. Spatial and temporal variations of coastal fish larvae, ectopara­sites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50: 563-574. https://doi.org/10.4067/S0718-19572015000400013

Leis J.M. 2006. Are Larvae of Demersal Fishes Plankton or Nek­ton? Adv. Mar. Biol. 51: 57-141. https://doi.org/10.1016/S0065-2881(06)51002-8

Leis J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57: 325-342. https://doi.org/10.1007/s10228-010-0177-z

Leis J.M., Paris C.B., Irisson J-O., et al. 2014. Orientation of fish larva in situ is consistent among locations, years and methods, but varies with time of day. Mar. Ecol. Prog. Ser. 505: 193-208. https://doi.org/10.3354/meps10792

López U., Gautrais J., Couzin I.D., et al. 2012. From behavioural analyses to models of collective motion in fish schools. Inter­face Focus 2: 693-707. https://doi.org/10.1098/rsfs.2012.0033 PMid:24312723 PMCid:PMC3499128

MacKenzie B.R., Leggett W.C. 1993. Wind-based models for es­timating the dissipation rates of turbulent energy in aquatics environments: empirical comparisons. Mar. Ecol. Progr. Ser. 94: 207-216. https://doi.org/10.3354/meps094207

Magurran A.E. 1990. The adaptive significance of schooling as an anti-predator defence in fish. Ann. Zool. Fenn. 27: 51-66.

Mansur L., Plaza G., Landaeta M.F., et al. 2014. Planktonic dura­tion in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65: 901-909. https://doi.org/10.1071/MF13064

Martínez C., Contreras-López M., Winckler P., et al. 2018. Coastal erosion in central Chile: A new hazard? Ocean Coast. Man. 156: 141-155. https://doi.org/10.1016/j.ocecoaman.2017.07.011

Maury O. 2017. Can schooling regulate marine populations and ecosystems? Prog. Oceanogr. 156: 91-103. https://doi.org/10.1016/j.pocean.2017.06.003

McDermontt C.J., Shima J.S. 2006. Ontogenetic shift in microhabi­tat preference of a temperate reef fish Forsterygion lapillum: implications for population limitation. Mar. Ecol. Prog. Ser. 320: 259-266. https://doi.org/10.3354/meps320259

Miller N., Gerlai R. 2012. From Schooling to Shoaling: Patterns of collective motion in zebrafish (Danio rerio). PLoS ONE 7: e48865. https://doi.org/10.1371/journal.pone.0048865 PMid:23166599 PMCid:PMC3498229

Muñoz A.A., Ojeda F.P. 1998. Guild structure of carnivorous in­tertidal fishes of the Chilean coast: implications of ontogenetic dietary shifts. Oecologia 114: 563-573. https://doi.org/10.1007/s004420050481 PMid:28307906

Narváez D.A., Poulin E., Leiva G., et al. 2004. Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont. Shelf Res. 24: 279-292. https://doi.org/10.1016/j.csr.2003.09.008

Palacios-Fuentes P., Landaeta M.F., Jahnsen-Guzmán N., et al. 2014. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48: 259-266. https://doi.org/10.1007/s10452-014-9481-4

Parrish J.K., Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99-101. https://doi.org/10.1126/science.284.5411.99 PMid:10102827

Parrish J.K., Hamner W.M., Prewitt C.T. 1997. Introduction-from individuals to aggregations: unifying properties, global frame­work, and the holy grails of congregation. In: Parrish J.K., Hamner W.M. (eds), Animal groups in three dimensions. Cam­bridge Univ. Press, Cambridge, pp. 1-14. https://doi.org/10.1017/CBO9780511601156.001

Pechenik J.A. 2006. Larval experience and latent effects - metamor­phosis is not a new beginning. Integr. Comp. Biol. 46: 323-333. https://doi.org/10.1093/icb/icj028 PMid:21672745

Pérez R. 1979. Postembryonic development of Tripterygion chil­ensis Cancino, 1955, in Valparaíso bay (Tripterygiidae: Perci­formes). Rev. Biol. Mar. 16: 19-329.

Pérez-Matus A., Sánchez F., González-But J.C., et al. 2016. Un­derstory algae associations and predation risk influence broad-scale kelp habitat use in a temperate reef fish. Mar. Ecol. Prog. Ser. 559: 147-158. https://doi.org/10.3354/meps11892

Ruck J.G. 1973. Development of Tripterygion capito and F. robus­tum (Pisces: Tripterygiidae). Zool. Publ. Vic. Univ. Wellingt. 63: 1-10

Ruck J.G. 1980. Early development of Forsterygion varium, Gillo­blennius decemdigitatus, and G. tripennis (Pisces: Tripterygii­dae). N. Z. J. Mar. Freshw. Res. 14: 313-326. https://doi.org/10.1080/00288330.1980.9515874

Sadoul B., Mengues P.E., Friggens N.C., et al. 2014. A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions. Aquaculture 430: 179-187. https://doi.org/10.1016/j.aquaculture.2014.04.008

Santana-Garcon J., Leis J.M., Newman S.J., et al. 2014. Presettle­ment schooling behaviour of a priacanthid, the Purplespotted Bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environ. Biol. Fish. 97: 277-283. https://doi.org/10.1007/s10641-013-0150-6

Shaffer G., Pizarro O., Djurfeldt L., et al. 1997. Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991-92 El Niño. J. Phys. Oceanogr. 27: 217-235. https://doi.org/10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2

Shaffer G., Hormazabal S., Pizarro O., et al. 1999. Seasonal and interannual variability of currents and temperature off central Chile. J. Geophys. Res. 104: 29951-29961. https://doi.org/10.1029/1999JC900253

Shima J.S., Findlay A.M. 2002. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235: 303-309. https://doi.org/10.3354/meps235303

Shima J.S, Swearer S.E. 2009. Larval quality is shaped by matrix ef­fects: Implications for connectivity in a marine metapopulation. Ecology 90: 1255-1267. https://doi.org/10.1890/08-0029.1 PMid:19537546

Stepien C.A. 1990. Population structure, diets and biogeographic relationships of a rocky intertidal fish assemblage in central Chile: high levels of herbivory in a temperate system. Bull. Mar. Sci. 47: 598-612.

Wellenreuther M., Clements K.D. 2008. Determinants of habitat association in a sympatric clade of marine fishes. Mar. Biol. 154: 393-402. https://doi.org/10.1007/s00227-008-0940-0

Williams J.T., Springer V.G. 2001. Review of the South American Antartic triplefin fish genus Helcogrammoides (Perciformes: Tripterygiidae). Rev. Biol. Trop. 49: 117-123.

Publicado

2020-09-15

Cómo citar

1.
Palacios-Fuentes P, Díaz-Astudillo M, Reculé MA, Patricio Ojeda F, Landaeta MF. Comportamiento del cardumen de preasentados de un pez rocoso en aguas someras. ¿Está relacionado con las condiciones ambientales?. Sci. mar. [Internet]. 15 de septiembre de 2020 [citado 23 de julio de 2024];84(3):243-52. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1860

Número

Sección

Artículos