Rendimiento fisiológico de acuerdo a la tasa de crecimiento, contenido de pigmentos y proteínas de la macroalga parda Sargassum filipendula (Ochrophyta: Fucales) inducida a radiación UV en el laboratorio

Autores/as

DOI:

https://doi.org/10.3989/scimar.04982.22A

Palabras clave:

algas, tasa de crecimiento, pigmentos fotosintéticos, proteínas, radiación ultravioleta, compuestos absorbentes de rayos UV

Resumen


La radiación UV es un factor que afecta la distribución y la fisiología de los organismos fotosintéticos en el ecosistema acuático. Los estudios con macroalgas indican diversas alteraciones biológicas en respuesta a la radiación UV. Este trabajo tuvo como objetivo estudiar la sensibilidad de la macroalga parda Sargassum filipendula expuesta a radiación UV: PAR (control), PAR + UVA + UVB (++) y PAR + UVA (++) + UVB. Los cambios en la tasa de crecimiento, proteínas solubles totales, pigmentos fotosintéticos y compuestos absorbentes de UV-vis se analizaron después de T0, T4, T7 y T10 (días) de exposición a UV. Los parámetros fisiológicos mostraron poca variación entre los tratamientos y con el tiempo, lo que sugiere que dosis moderadas de radiación UV podrían regular las respuestas de resistencia para restablecer la condición de homeostasis celular a través de la activación del sistema de defensa antioxidante, como la sobreproducción de compuestos fenólicos. Las respuestas registradas en S. filipendula estarían relacionadas con mecanismos de aclimatación contra el estrés agudo por radiación UV, desencadenando respuestas de resistencia para evitar daños severos en la maquinaria metabólica, activando sistemas de control para mantener la hormesis y homeostasis de acciones deletéreas de especies reactivas, similar al fenómeno llamado preparación para el estrés oxidativo (POS). Finalmente, los espectros de absorción UV-visible mostraron bandas de absorción que evidencian la presencia de compuestos absorbentes de UV principalmente con función fotoprotectora, como los florotaninos, flavonoides y carotenoides que podrían proporcionar ventajas adaptativas para los organismos expuestos a la radiación UV.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdala-Diaz R.T., Cabello-Pasini A., Pérez-Rodríguez E., et al. 2006. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148: 459-465. https://doi.org/10.1007/s00227-005-0102-6

Abirami R.G., Kowsalya S. 2017. Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J. Herbs, Spices Med. Plants 23: 9-17. https://doi.org/10.1080/10496475.2016.1240132

Al-Azzawie H.F., Alhamdani M.S.S. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1377. https://doi.org/10.1016/j.lfs.2005.07.029 PMid:16236331

Altamirano M., Flores-Moya A., Figueroa F.L. 2003. Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquat. Bot. 75: 9-20. https://doi.org/10.1016/S0304-3770(02)00149-3

Amado Filho G.M., Andrade L.R., Karez C.S., et al. 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res. 48: 213-224. https://doi.org/10.1016/S0141-1136(99)00042-2

Aro E.M., Virgin I., Andersson B. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA - Bioenerg. 1143: 113-134. https://doi.org/10.1016/0005-2728(93)90134-2

Ayres-Ostrock L.M., Plastino E.M. 2014. Effects of short-term exposure to ultraviolet-B radiation on photosynthesis and pigment content of red (wild types), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 26: 867-879. https://doi.org/10.1007/s10811-013-0131-3

Bais A.F., McKenzie R.L., Bernhard G., et al. 2015. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 14: 19-52. https://doi.org/10.1039/C4PP90032D PMid:25380284

Barufi J., Korbee N., Oliveira M., et al. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J. Appl. Phycol. 23: 457-466. https://doi.org/10.1007/s10811-010-9603-x

Behrenfeld M.J., Lean D.R.S., Lee H. 1995. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J. Phycol. 31: 25-36. https://doi.org/10.1111/j.0022-3646.1995.00025.x

Berglin M., Delage L., Potin P., et al. 2004. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5: 2376-2383. https://doi.org/10.1021/bm0496864 PMid:15530054

Bischof K., Hanelt D., Tüg H., et al. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol. 20: 388-395. https://doi.org/10.1007/s003000050319

Bischof K., Hanelt D., Wiencke C. 2000a. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211: 555-562. https://doi.org/10.1007/s004250000313 PMid:11030555

Bischof K., Kräbs G., Hanelt D., et al. 2000b. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: A competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol. Mar. Res. 54: 47-52. https://doi.org/10.1007/s101520050035

Björn L.O. 2007. Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol. Conserv. 135: 326-333. https://doi.org/10.1016/j.biocon.2006.10.006

Bornman J.F., Teramura A.H. 1993. Effects of enhanced UV-B radiation on terrestrial plants. In: Young A.R., Bjorn L.O., et al. (eds) Environmental UV Photobiology. Plenum Press, New York, pp, 427-471. https://doi.org/10.1007/978-1-4899-2406-3_14

Bouzon Z.L., Chow F., Zitta C.S., et al. 2012. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-b on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Microsc. Microanal. 18: 1467-1479. https://doi.org/10.1017/S1431927612013359 PMid:23153514

Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Buma A.G.J., Walter Helbling E., Karin De Boer M., et al. 2001. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J. Photochem. Photobiol. B Biol. 62: 9-18. https://doi.org/10.1016/S1011-1344(01)00156-7

Celis-Plá P.S.M., Korbee N., Gómez-Garreta A., et al. 2014. Patrones estacionales de fotoaclimatación en el alga intermareal, Cystoseira tamariscifolia (Ochrophyta). Sci. Mar. 78: 377-388. https://doi.org/10.3989/scimar.04053.05A

Celis-Plá P.S.M., Brown M.T., Santillán-Sarmiento A., et al. 2018. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 128: 214-222. https://doi.org/10.1016/j.marpolbul.2018.01.005 PMid:29571366

Chakraborty K., Joseph D. 2016. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (Class: Phaeophyceae). J. Aquat. Food. Prod. Technol. 25: 1249-1265. https://doi.org/10.1080/10498850.2015.1054540

Chow F., De Oliveira M.C. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): Influence of different nitrogen sources. J. Appl. Phycol. 20: 775-782. https://doi.org/10.1007/s10811-008-9310-z

Cruces E., Huovinen P., Gómez I. 2013. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar. Biol. 160: 1-13. https://doi.org/10.1007/s00227-012-2049-8

Cullen J., Neale P. 1994. Ultraviolet radiation, ozone depletation, and marine photosynthesis. Photosynth. Res. 39: 303-320. https://doi.org/10.1007/BF00014589 PMid:24311127

D'Orazio N., Gemello E., Gammone M.A., et al. 2012. Fucoxantin: A treasure from the sea. Mar. Drugs 10: 604-616. https://doi.org/10.3390/md10030604 PMid:22611357 PMCid:PMC3347018

Dahms H.U., Dobretsov S., Lee J.S. 2011. Effects of UV radiation on marine ectotherms in polar regions. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 153: 363-371. https://doi.org/10.1016/j.cbpc.2011.01.004 PMid:21300175

Diffey B.L. 2002. Sources and measurement of ultraviolet radiation. Methods 28: 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9

Döhler G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant. Physiol. 151: 550-555. https://doi.org/10.1016/S0176-1617(97)80229-5

Döhler G., Hagmeier E., David C. 1995. Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J. Photochem. Photobiol. B Biol. 30: 179-187. https://doi.org/10.1016/1011-1344(95)07189-9

Edwards P. 1970. Illustre ated guide of seaweeds and sea grasses in vicinity of Porto Arkansas, Texas. Contrib. Mar. Sci. 15: 1-228.

Falkowski P., LaRoche J. 1990. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x

Figueroa F.L., Domínguez-González B., Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 97: 30-38. https://doi.org/10.1016/j.marenvres.2014.01.009 PMid:24556033

Gao K., Xu J. 2008. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur. J. Phycol. 43: 297-307. https://doi.org/10.1080/09670260801986837

Goes J.I., Handa N., Taguchi S., et al. 1994. Effect of UV-B radiation on the fatty-acid composition of the marine-phytoplankton Tetraselmis sp.: relationship to cellular pigments. Mar. Ecol. Prog. Ser. 114: 259-274. https://doi.org/10.3354/meps114259

Gorostiaga J.M., Díez I. 1996. Changes in the sublittoral benthic marine macroalgae in the polluted area of Abra de Bilbao and proximal coast (Northern Spain). Mar. Ecol. Prog. Ser. 130: 157-167. https://doi.org/10.3354/meps130157

Häder D.-P., Kumar H.D., Smith R.C., et al. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6: 267-285. https://doi.org/10.1039/B700020K PMid:17344962

Heo S.J., Jeon Y.J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 95: 101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011 PMid:19264501

Hermes-Lima M., Storey K. 1998. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell. Biochem. 189: 79-89. https://doi.org/10.1023/A:1006868208476 PMid:9879657

Holzinger A., Lütz C. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207. https://doi.org/10.1016/j.micron.2005.10.015 PMid:16376552

Holzinger A., di Piazza L., Lütz C., et al. 2011. Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: Photosynthetically active radiation ratio. Phycol. Res. 59: 221-235. https://doi.org/10.1111/j.1440-1835.2011.00620.x

Jeffrey S.W. 1963. Purification and Properties of Chlorophyll c from Sargassum flavicans. Biochem. J. 86: 313-318. https://doi.org/10.1042/bj0860313 PMid:13964566 PMCid:PMC1201755

Karentz D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct. Res. Ser. 62: 93-110. https://doi.org/10.1029/AR062p0093

Khotimchenko S.V., Yakovleva I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79. https://doi.org/10.1016/j.phytochem.2004.10.024 PMid:15649513

Korbee N., Huovinen P., Figueroa F.L., et al. 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 146: 645-654. https://doi.org/10.1007/s00227-004-1484-6

Kumar A., Tyagi M.B., Jha P.N. 2004. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem. Biophys. Res. Commun. 318: 1025-1030. https://doi.org/10.1016/j.bbrc.2004.04.129 PMid:15147976

Labuckas D.O., Maestri D.M., Perelló M., et al. 2008. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food. Chem. 107: 607-612. https://doi.org/10.1016/j.foodchem.2007.08.051

Lee T.M., Shiu C.T. 2009. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii. Mar. Environ. Res. 67: 8-16. https://doi.org/10.1016/j.marenvres.2008.09.006 PMid:19036429

Li Y.X., Wijesekara I., Li Y., et al. 2011. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 46: 2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015

Li Y., Fu X., Duan D. et al. 2017. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar. Drugs. 15: 1-15. https://doi.org/10.3390/md15020049 PMid:28230766 PMCid:PMC5334629

Liang Y., Beardall J., Heraud P. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 82: 161-172. https://doi.org/10.1016/j.jphotobiol.2005.11.002 PMid:16388965

Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In: Packer L., Douce R. (eds), Plant Cell Membranes. Methods Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

Lichtenthaler H.K., Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food. Anal. Chem. 1: F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

Lippert H., Iken K., Rachor E., et al. 2001. Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biol. 24: 512-522. https://doi.org/10.1007/s003000100250

Madronich S., McKenzie R.L., Björn L.O., et al. 1998. Changes in biologically active ultraviolet radiation reaching the Earth's surface. J. Photochem. Photobiol. B Biol. 46: 5-19.

Makarov M. 1999. Influence of ultraviolet radiation on the growth of the dominant macroalgae of the Barents Sea. Chemosph - Glob. Chang. Sci. 1: 461-467. https://doi.org/10.1016/S1465-9972(99)00034-3

Michler T., Aguilera J., Hanelt D., et al. 2002. Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Mar. Biol. 140: 1117-1127. https://doi.org/10.1007/s00227-002-0791-z

Moreira D.C., Oliveira M.F., Liz-Guimarães L., et al. 2017. Current trends and research challenges regarding "preparation for oxidative stress". Front. Physiol. 8: 1-8. https://doi.org/10.3389/fphys.2017.00702 PMid:28993737 PMCid:PMC5622305

Navarro N.P., Figueroa F.L., Korbee N., et al. 2016. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation. J. Phycol. 52: 451-462. https://doi.org/10.1111/jpy.12407 PMid:26990026

Panche A.N., Diwan A.D., Chandra S.R. 2016. Flavonoids: An overview. J. Nutr. Sci. 5: 1-15. https://doi.org/10.1017/jns.2016.41 PMid:28620474 PMCid:PMC5465813

Paula E.J., Eston V.R. 1987. Are there other Sargassum species potentially as invasive as S. muticum? Bot. Mar. 30: 405-410. https://doi.org/10.1515/botm.1987.30.5.405

Penniman C., Mathieson C., Penniman C.E. 1986. Reproductive phenology and growth of Gracilaria tikvahiae McLachlan (Gigartinales, Rhodophyta) in the Great Bay Estuary, New Hampshire. Bot. Mar. 29: 147-154. https://doi.org/10.1515/botm.1986.29.2.147

Pereira D.T., Simioni C., Ouriques L.C., et al. 2017. Comparative study of the effects of salinity and UV radiation on metabolism and morphology of the red macroalga Acanthophora spicifera (Rhodophyta, Ceramiales). Photosynthetica 56: 799-810. https://doi.org/10.1007/s11099-017-0731-2

Polo L.K., Felix M., Kreusch M. et al. 2014a. Photoacclimation responses of the brown macroalga Sargassum cymosum to the combined influence of UV radiation and salinity: Cytochemical and ultrastructural organization and photosynthetic performance. Photochem. Photobiol. 90: 560-573. https://doi.org/10.1111/php.12224 PMid:24329523

Polo L.K., Felix M., Kreusch M., et al. 2014b. Metabolic profile of the brown macroalga Sargassum cymosum (Phaeophyceae, Fucales) under laboratory UV radiation and salinity conditions. J. Appl. Phycol. 27: 887-899. https://doi.org/10.1007/s10811-014-0381-8

Ritchie R.J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46: 115-126. https://doi.org/10.1007/s11099-008-0019-7

Roleda M.Y., Hanelt D., Kräbs G., et al. 2004. Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43: 603-613. https://doi.org/10.2216/i0031-8884-43-5-603.1

Roleda M.Y., Lüder U.H., Wiencke C. 2010. UV-susceptibility of zoospores of the brown macroalga Laminaria digitata from Spitsbergen. Polar Biol. 33: 577-588. https://doi.org/10.1007/s00300-009-0733-z

Ruhland C.T., Fogal M.J., Buyarski C.R., et al. 2007. Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa. Molecules 12: 1220-1232. https://doi.org/10.3390/12061220 PMid:17876291 PMCid:PMC6149342

Salgado LT., Andrade L.R., Amado G.M. 2005. Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation. Protoplasma 225: 123-128. https://doi.org/10.1007/s00709-004-0066-2 PMid:15868219

Salgado L.T., Tomazetto R., Cinelli L.P., et al. 2007. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Brazilian J. Oceanogr. 55: 145-154. https://doi.org/10.1590/S1679-87592007000200007

Sampath-Wiley P., Neefus C.D., Jahnke L.S. 2008. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis. J. Exp. Mar. Bio. Ecol. 361: 83-91 https://doi.org/10.1016/j.jembe.2008.05.001

Schmidt É.C., dos Santos R., Horta P.A., et al. 2010a. Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in cell organization, growth and photosynthetic performance. Micron 41: 919-930. https://doi.org/10.1016/j.micron.2010.07.010 PMid:20732818

Schmidt É.C., Maraschin M., Bouzon Z.L. 2010b. Effects of UVB radiation on the carragenophyte Kappaphycus alvarezii (Rhodophyta, Gigartinales): Changes in ultrastructure, growth, and photosynthetic pigments. Hydrobiologia 649: 171-182. https://doi.org/10.1007/s10750-010-0243-6

Schmidt É.C., dos Santos R.W., de Faveri C., et al. 2012. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B: Changes in ultrastructure, pigments, and antioxidant systems. J. Appl. Phycol. 24: 1341-1352. https://doi.org/10.1007/s10811-012-9786-4

Schmidt É.C., Kreusch M., Felix M., et al. 2015. Effects of ultraviolet radiation (UVA+UVB) and copper on the morphology, ultrastructural organization and physiological responses of the red alga Pterocladiella capillacea. Photochem. Photobiol. 91: 359-370. https://doi.org/10.1111/php.12396 PMid:25443444

Schoenwaelder M.E. 2002. The occurrence and cellular significance of physodes in brown algae. Phycologia 41: 125-139. https://doi.org/10.2216/i0031-8884-41-2-125.1

Senger H., Bauer B. 1987. The influence of light quality on adaptation and function of the photosynthetic apparatus. Photochem. Photobiol. 45: 939-946. https://doi.org/10.1111/j.1751-1097.1987.tb07905.x

Simioni C., Schmidt É.C., Felix M., et al. 2014. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: Growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure. Photochem. Photobiol. 90: 1050-1060. https://doi.org/10.1111/php.12296 PMid:24893751

Strid Å., Chow W.S., Anderson J.M. 1994. UV-B damage and protection at the molecular level in plants. Photosynth. Res. 39: 475-489. https://doi.org/10.1007/BF00014600 PMid:24311138

Széchy M.T.M., Veloso V.G., De Paula É.J. 2001. Brachyura (Decapoda, Crustacea) of phytobenthic communities of the sublittoral region of rocky shores of Rio de Janeiro and São Paulo, Brazil. Trop. Ecol. 42: 231-242.

Teramura A.H. 1983. Effects of ultraviolet B radiation on the growth and yield of crop plants. Physiol. Plant. 58: 415-427. https://doi.org/10.1111/j.1399-3054.1983.tb04203.x

Ursi S., Plastino E.M. 2001. Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria birdiae (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev. bras. Bot. 24: 587-594. https://doi.org/10.1590/S0100-84042001000500014

Villafañe V.E., Sundback K., Figueroa F.L., et al. 2003. Environment, Photosynthesis in the aquatic UVR, as affected by UVR. In: Helbling E., Zagarese H. (eds), UV Effects in Aquatic Organisms and Ecosystems. Comprehensive Series in Photochemical and Photobiological Sciences, pp 359-383.

Viñegla B., Figueroa F. 2009. Effect of solar and artificial UV radiation on photosynthetic performance and carbonic anhydrase activity in intertidal macroalgae from southern Spain. Ciencias Mar. 35: 59-74. https://doi.org/10.7773/cm.v35i1.1512

Wang W., Wang S.X., Guan H.S. 2012. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar. Drugs 10: 2795-2816. https://doi.org/10.3390/md10122795 PMid:23235364 PMCid:PMC3528127

Xu J., Gao K. 2010. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J. Photochem Photobiol. B Biol. 100: 117-122. https://doi.org/10.1016/j.jphotobiol.2010.05.010 PMid:20573516

Publicado

2020-03-30

Cómo citar

1.
Polo LK, Chow F. Rendimiento fisiológico de acuerdo a la tasa de crecimiento, contenido de pigmentos y proteínas de la macroalga parda Sargassum filipendula (Ochrophyta: Fucales) inducida a radiación UV en el laboratorio. Sci. mar. [Internet]. 30 de marzo de 2020 [citado 23 de febrero de 2025];84(1):59-70. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844

Número

Sección

Artículos