Comportamiento alimentício de la hidromedusa Aequorea vitrina

Autores/as

  • Hans Ulrik RiisgÅrd Marine Biological Research Centre, University of Southern Denmark, Hindsholmvej

DOI:

https://doi.org/10.3989/scimar.2007.71n2395

Palabras clave:

Aequorea vitrina, mecanismo de captura de presas, observaciones por videomicroscopio

Resumen


El mecanismo de la hidromedusa Aequorea vitrina para la captura de presas fue estudiado por medio de observaciones microscópicas y registros de video en el laboratorio. Aequora vitrina permanece inmóvil en aguas tranquilas con sus largos tentáculos (aprox. 4 veces el diámetro de la umbrela) colgando inermes y a la espera de la captura de presas que colisionen con ellos. A. vitrina se mostró eficiente en la captura de Artemia salina, aunque menos en la captura de rotíferos (Brachionus plicatilis), y muy ineficiente sobre copépodos (Acartia tonsa). La contracción inicial de un tentáculo marginal previamente extendido y que lleve una presa adherida es rápida (>10 mm s-1). Tanto la campana como la boca se mueven una hacia la otra por lo que la presa capturada puede ser transferida desde el tentáculo a los alargados labios orales para ser transportados luego al estómago. Pasan unos 20 segundos desde que una Artemia queda adherida a un tentáculo hasta que es transferida a los labios orales. La subsiguiente digestión en el estómago dura unos 30 minutos. Cuando A. vitrina encuentra una presa gelatinosa (una pequeña medusa Aurelia aurita), empieza a nadar para que la presa relativamente grande se adhiera a sus labios orales. Entonces A. vitrina abre su boca ampliamente para ingerir la medusa capturada, un proceso que dura entre 15 y 20 minutos. La siguiente digestión dura 2-3 horas. Observación in situ de ejemplares no alterados de A. vitrina en Limfjord (Dinamarca) revelaron que el comportamiento trófico fue similar al observado en el laboratorio en aguas estancadas. Se concluye que A. vitrina es un depredador pasivo y no un nadador activo como se había sugerido previamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akaike, H. – 1973. Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csaki (eds.), Second international symposium on information theory, pp. 267-281. Akademiai Kiado, Budapest.

Akaike, H. – 1981. Likelihood of a model and information criteria. J. Econometrics, 16: 3-14 doi:10.1016/0304-4076(81)90071-3

Akaike, H. – 1983. Information measures and model selection. B. Int. Stat. Inst., 44: 277-291.

Buckland, S.T., K.P. Burnham and N.H. Augustin. – 1997. Model selection: an integral part of inference. Biometrics, 53: 603-618. doi:10.2307/2533961

Burnham, K.P. and D.R. Anderson. – 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York.

Cannicci, S., J. Paula and M. Vannini. – 1999. Activity pattern and spatial strategy in Pachygrapsus marmoratus (Decapoda: Grapsidae) from Mediterranean and Atlantic shores. Mar. Biol., 133: 429-435. doi:10.1007/s002270050481

Cannicci, S., M. Gomei, B. Boddi and M. Vannini. – 2002. Feeding habits and natural diet of the intertidal crab Pachygrapsus marmoratus: Opportunistic browser or selective feeder? Estuar. Coast. Shelf Sci., 54: 983-1001. doi:10.1006/ecss.2001.0869

Ebert, T.A. and M.P. Russell. – 1994. Allometry and Model II nonlinear regression. J. Theor. Biol., 168: 367-372. doi:10.1006/jtbi.1994.1116

Efron, B. and R.J. Tibshirani. – 1993. An introduction to the bootstrap. Chapman and Hall, New-York.

Flores, A. and J. Paula. – 2001. Intertidal distribution and species composition of brachyuran crabs at two rocky shores in Central Portugal. Hydrobiologia, 449: 171-177. doi:10.1023/A:1017573927565

Flores, A. and J. Paula. – 2002. Population dynamics of the shore crab Pachygrapsus marmoratus (Brachyura: Grapsidae) in the central Portuguese coast. J. Mar. Biol. Ass. U.K., 82: 229-241. doi:10.1017/S0025315402005404

Flores, A. and M.L. Negreiros-Fransozo. – 1999. Allometry of the socondary sexual characters of the shore crab Pachygrapsus transversus (Gibbes, 1850) (Brachyoura, Grapsidae). Crustaceana, 72: 1051-1066. doi:10.1163/156854099504013

Hall, N.G., K.D. Smith, S. de Lestang and I.C. Potter. – 2006. Does the largest chela of the males of three crab species undergo an allometric change that can be used to determine morphometric maturity? ICES J. Mar. Sci., 63: 140-150. doi:10.1016/j.icesjms.2005.07.007

Hartnoll, R.G. – 1963. The biology of Manx spider crabs. Proc. Zool. Soc. London, 141: 423-496.

Hartnoll, R.G. – 1983. Strategies of Crustacean Growth. Aus. Mus. Syd. Mem., 18: 121-131.

Hartnoll, R.G. – 1985. Growth, sexual maturity and reproductive output. In: A.M. Wenner (ed.), Crustacean issues 3, Factors in adult growth. Balkema, Rotterdam/Boston.

Hurvich, C.M and C.L. Tsai. – 1989. Regression and time series model selection in small samples. Biometrika, 76: 297-307. doi:10.1093/biomet/76.2.297

Huxley, J.S. – 1932. Problems of relative growth. Methuen, London.

Ingle, R.W. – 1980. British crabs. British Museum (Natural History), Oxford University Press, London.

Jolicoeur, P. – 1990. Bivariate allometry: interval estimation of the slopes of the ordinary and standardized major axes and structural relationship. J. Theor. Biol., 144: 275-285. doi:10.1016/S0022-5193(05)80326-1

Katsanevakis, S. – 2006. Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fish. Res., 81: 229-235. doi:10.1016/j.fishres.2006.07.002

Katsanevakis, S., M. Thessalou-Legaki, C. Karlou-Riga, E. Lefkaditou, E. Dimitriou and G. Verriopoulos. – 2007a. Information-theory approach to allometric growth of marine organisms. Mar. Biol., 151: 949-959. doi:10.1007/s00227-006-0529-4

Katsanevakis, S., J. Xanthopoulos, N. Protopapas and G.Verriopoulos. – 2007b. Oxygen consumption of the semi-terrestrial crab Pachygrapsus marmoratus in relation to body mass and temperature: an information theory approach. Mar. Biol., 151: 343-352. doi:10.1007/s00227-006-0485-z

McQuarrie, A.D.R. and C.L. Tsai. – 1998. Regression and time series model selection. World Scientific Publishing Company, Singapore.

Olmsted, J.M.D. and J.P. Baumberger. – 1923. A comparison of the form of three species of grapsoid crabs. J. Morphol., 38: 279-294. doi:10.1002/jmor.1050380203

Sainte-Marie, B. and G.A. Lovrich. – 1994. Delivery and storage of sperm at first mating of female Chionoecetes opilio (Brachyoura: Majidae) in relation to size and morphometric maturity of male parent. J. Crust. Biol., 14: 508-521. doi:10.2307/1548997

Shea, E.K. and M. Vecchione. – 2002. Quantification of ontogenetic discontinuities in three species of oegopsid squids using model II piecewise linear regression. Mar. Biol., 140: 971-979. doi:10.1007/s00227-001-0772-7

Somerton, D.A. – 1981. Regional variation in the size of maturity of two species of tanner crab (Chionoecetes bairdi and C. opilio) in the eastern Bering Sea, and its use in defining management subareas. Can. J. Fish. Aquat. Sci., 38: 163-174. doi:10.1139/f81-022

Somerton, D.A. – 1983. The size at sexual maturity of the blue king crab, Paralithodes platypus, in Alaska. Fish. Bull., 81: 621-628.

Tsuchida, S. and S. Watanabe. – 1997. Growth and reproduction of the grapsid crab Plagusia dentipes (Decapoda: Brachyoura). J. Crust. Biol., 17: 90-97. doi:10.2307/1549466

Vernet-Cornubert, C. – 1958. Recherches sur la sexualité du crab Pachygrapsus marmoratus (Fabricius). Arch. Zool. Exp. Gén., 96: 104-276.

Descargas

Publicado

2007-06-30

Cómo citar

1.
Ulrik RiisgÅrd H. Comportamiento alimentício de la hidromedusa Aequorea vitrina. Sci. mar. [Internet]. 30 de junio de 2007 [citado 22 de julio de 2024];71(2):395-404. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/18

Número

Sección

Artículos